
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Generating Executable Go Code from the
Isabelle Theorem Prover

Matthias Stübinger

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Generating Executable Go Code from the
Isabelle Theorem Prover

Generierung von ausführbarem Go Code
aus dem Beweisassistenten Isabelle

Author: Matthias Stübinger
Supervisor: Prof. Tobias Nipkow
Advisor: Lars Hupel
Submission Date: June 15, 2023

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, June 15, 2023 Matthias Stübinger

Abstract

The Isabelle proof assistant includes a small functional language, which allows users to
write programs and prove propositions about these programs. So far, the so-written
code could be extracted into a number of functional languages: Standard ML, OCaml,
Scala, and Haskell.

This work adds support for Go as a fifth target language for the code generator.
Unlike the previous target languages, Go is not a functional language and encourages
code in an imperative style, thus many of the features of Isabelle’s language (particularly
data types, pattern matching, and type classes) have to be emulated using imperative
language constructs in Go.

The developed code generation is provided both as an out-of-tree development which
can be used with any recent development version of Isabelle by simply importing it,
and as an in-tree set of patches for Isabelle itself which allow deeper integration with
existing Isabelle tools.

Finally, methods of testing the generated code for bugs, i.e. cases where its behaviour
differs from the Isabelle formalisation from which it was extracted, are discussed.

iii

Contents

Abstract iii

1. Introduction 1
1.1. Motivation . 1
1.2. Structure . 2

2. Thingol 3
2.1. Names . 4
2.2. Types & Terms . 4
2.3. Statements . 5

3. A Fragment of Go 7
3.1. Syntax . 8
3.2. Declarations . 9
3.3. Expressions . 11
3.4. Statements . 12
3.5. Packages . 13
3.6. Built-in Functions . 13

4. Code Generation 15
4.1. Names . 15

4.1.1. Renamings . 15
4.1.2. Optional names . 16

4.2. Types . 16
4.3. Terms . 17

4.3.1. Constants . 17
4.3.2. Bound Variables . 18
4.3.3. Abstractions . 18
4.3.4. Applications . 18

4.4. Data Types . 19
4.4.1. Constructors . 20
4.4.2. Destructors . 20
4.4.3. Field Names . 21

iv

Contents

4.5. Case expressions . 21
4.5.1. Let-Bindings . 22
4.5.2. Proper Patterns . 22
4.5.3. Reducing the number of nested if 23

4.6. Top-level Functions . 24
4.6.1. Top-level Variables: . 25
4.6.2. Empty Functions . 25

4.7. Type Classes . 26
4.7.1. Why Interfaces are insufficient . 26
4.7.2. The Dictionary Translation . 26
4.7.3. A Dictionary type . 27
4.7.4. A Dictionary value . 28

4.8. Unused Variables . 29
4.9. Packages . 30

5. Native Code Adaptations 32
5.1. Isabelle/HOL . 32

5.1.1. Comparison to other target languages 33
5.2. Program-terminating Functions . 34

6. Evaluation 35
6.1. A Case Study . 35
6.2. HOL Codegenerator-Test . 36

6.2.1. Integration into Isabelle . 36
6.2.2. test_code . 36
6.2.3. Exporting HOL . 37

6.3. Theorem-based Tests . 37

7. Conclusion 39

A. List of changes made to Isabelle 41

B. User’s Guide 42
B.1. List of Target-specific Options . 43

Bibliography 45

v

1. Introduction

The interactive theorem prover Isabelle of the LCF tradition (Nipkow and Klein 2014)
is based on a small, well-established and trusted kernel written in Standard ML. All
higher-level tools and proofs, such as those included in the most commonly-used logic
Isabelle/HOL, have to work through this kernel.

Some (but by far not all) of the tools available to users in Isabelle/HOL feel immediately
familiar to anyone with experience in functional programming languages: it is possible
to define data types (via the datatype command), functions (via fun and function), as
well as type classes and instances akin to Haskell (via class and instance).

1.1. Motivation

Unlike most other languages, Isabelle’s nature as a theorem prover means that it is easy
to formalise and prove propositions about the behaviour of the programs written in it,
for example to ensure that a specific invariant is never violated.

To allow use of such programs outside of the proof assistant’s environment, Isabelle
comes equipped with a code generator, allowing users to extract source code in Haskell,
Standard ML, Scala, or OCaml, which can then be compiled and executed. This
translation of code works via an intermediate language called Thingol shared by all
target languages; finally the code of the intermediate language is transformed into
code in the individual target languages by the principle of shallow embedding, that is, by
representing constructs of the source language using only a well-defined subset of the
target language (Haftmann 2009; Haftmann and Nipkow 2010).

On the other hand, Go is a programming language introduced by Google in 2009
(Griesemer, Pike, et al. 2009). It is a general-purpose, garbage-collected, and statically
typed language (Go Team 2022). In contrast to the existing targets of Isabelle’s code
generator, it is not a functional language, and encourages programming in an imperative
style. However, it is a very popular language1, and many large existing code bases have
been written in it.

1As a rough indication, the Stack Overflow 2023 Survey lists it as the 13th most commonly used language,
above the existing targets Scala, Haskell, and OCaml on places 27, 31, and 43 respectively. Standard
ML is not included in the ranking.

1

1. Introduction

The aim of this work is to give a translation schema from programs in Thingol to
programs in Go, and thereby allow Isabelle users to also generate Go code from their
theory files. This extension to the code generator exists (almost, compare Appendix A)
entirely as an out-of-tree development separate from the main Isabelle distribution,
which can be used with a suitably recent development version of Isabelle. Its source
code is made available at https://git.sr.ht/~stuebinm/isabelle-go-codegen.

1.2. Structure

The next two chapters 2 and 3 will give an overview of Thingol, the intermediate
language used during code generation, and of the fragment of Go which is used as
target for the shallow embedding process.

Chapter 4 will then discuss the translation itself. Given the fundamental differences
between Go and the previous target languages, some challenges present themselves:
in particular, obvious equivalents for data types (discussed in Section 4.4) and pattern
matching (discussed in Section 4.5) are features which have existed (with minor differ-
ences) in all previous target languages, but are entirely absent in Go, and thus must
be emulated using different features. Type classes likewise have no easy equivalent
in Go; here the well-known dictionary construction for type classes (Haftmann and
Nipkow 2010; Hupel 2019) which is also used for the Standard ML and OCaml targets
is adapted for Go in Section 4.7.

Finally, several ways to approach testing correctness of the generated code are dis-
cussed in Chapter 6.

There are two appendices: while the Go code generator is in principle an out-of-tree
development, a small number of minor changes to Thingol itself had to be made to
accommodate type information needed to generate Go code, which all of the previous
targets could infer on their own; these are listed in Appendix A. A short guide for users
of the code generator with Go is given in Appendix B.

2

https://git.sr.ht/~stuebinm/isabelle-go-codegen

2. Thingol

Isabelle’s code generation pipeline works in multiple stages. Most importantly, all
definitions made in Isabelle are first translated into an abstract intermediate language
called Thingol, which is the last stage shared between all target languages. The final
stage then uses a shallow embedding to translate the Thingol program into source code
of the target language.

Thingol is meant to capture all target languages’ common essence, as a “rest point”
between the formal world of Isabelle, and the “dirtier”, less specified and diverse world
of target languages.

Of course, if one intends to add a new target language, this implies most (if not all)
of the work will already lie beyond this rest point: Thingol has no formal description of
its semantics, and neither has Go (or any of the other target languages except Standard
ML). Thus for most of the way, there can only be informal reasoning; the satisfaction
of achieving verification “all the way,” i.e. being able to confidently assert that the
generated code will “always” behave as the original Isabelle equations from which it
was translated thus seems very far away.

Nevertheless, we can still attempt to make as sure as we reasonable can that, in
practice, the generated code will most likely never go wrong—or at least, by applying
the same testing strategies programmers use for “ordinary” code which has never been
formalised, we can hope to be sure that if the generated code ever does go wrong, it
will do so less often than it would have had it been hand-written in the target language
from the start.

As such, Thingol is meant purely as an intermediate language: it exists only as a
series of data type definitions within Isabelle/ML, and even if it had syntax (and a
parser to read the syntax), most programmers would not find it comfortable to write
code in it.

However, since all Thingol code the generator receives will always itself be generated
from Isabelle, it comes with a few unusual guarantees which make using it as an input
language much easier.

3

2. Thingol

2.1. Names

While names of bindings or constants are preserved from Isabelle, Thingol has two
basic provisions to deal with the usual issues that may arise:

• There is extensive infrastructure to “deresolve” names into a unique form. In
particular, this means that at any point in the target language, all names in scope
will be unique, and names will never be shadowed.

• In the same manner, it is always possible to create a guaranteed-unused and there-
fore “fresh” name, should a target language construct require one, without having
to fear it will shadow existing ones and unintentionally change the semantics of
the generated program.

Taken together, these can be summed up by saying: the generator (almost) never has
to care about names1 when emitting code, and intricacies of how to avoid shadowing
existing names will not be mentioned in the rest of this work.

2.2. Types & Terms

Previous target languages of Isabelle’s code generator were all functional, with most of
them being part of the “ML tradition” of languages: Standard ML, OCaml, Haskell,
and Scala.

As such, Thingol’s design reflects the features common to all of them, its terms
being essentially a typed λ-calculus with polymorphism, sorts used to implement type
classes, and a case-expression used to do pattern matching:

• sorts: s ::= c1 ∩ · · · ∩ cn

• types: τ ::= κ τ | α :: s

• terms: t ::= f [τ] | x :: τ | λx :: τ. (t :: γ) | t1 t2 | case t :: τ of
[
p → b

]
Types: consist of either a type constructor κ with a fixed arity, or are a type variable
constrained by a sort, which can be read as the type variable being “constrained” by a
set of type classes, instances of each must be available for types it is instantiated with.

Sorts: work as they do in Isabelle/Pure2 and encode a simple order-sorted algebra
based on intersections of classes: one sort subsumes another sort if it contains at least
all the same classes.

1as Goethe would have said, “Gebundene Namen sind Schall und Rauch.”
2In fact, they are implemented using the same Standard ML type.

4

2. Thingol

Terms: are exactly the abstraction, application, and bound variable known from λ-
calculus. Notably, variable names in terms are optional, and may be set to the empty
name “_” in patterns.

In addition, there are constants which represent top-level names which exist out-
side the term (for example, functions defined at a program’s top-level), and a case-
expressions used for pattern matching on data types.

Constants take a list of type parameters and are thus polymorphic. While they can
be used as multiple different types, each usage is annotated with the types τ used to
instantiate its parameters.

The case expression’s pattern matching works in the usual way: a pattern’s term is
restricted to variables and fully satisfied applications of data type constructors. Patterns
are compared one-by-one in the given order to the term t’s value. The entire expression
then evaluates to the body bi of the first matching clause pi → bi. If no pattern at all
matches, the program as a whole aborts.

2.3. Statements

As with terms, Thingol’s top-level statements are likewise familiar from other functional
programming languages:

data κ αk = f1 of τ1 | · · · | fn of τn

fun f :: ∀α :: sk.τ where
f [α :: sk] t1 = t1

| . . .
| f [α :: sk] tn = tn

class c ⊆ c1 ∩ · · · ∩ cm where
g1 :: ∀α :: c. τ1, . . . , gn :: ∀α :: c. τn

inst κ α :: sk :: c where
g1 [κ α :: sk] = t1, . . . , gn[κ α :: sk] = tn

Figure 2.1.: Thingol’s statements in Haskell-like syntax, taken from Haftmann and
Nipkow 2010.

Data types: data types are the only way to introduce new type constructors within a
program. As in Standard ML or Haskell, a data type consists of a list of constructors,

5

2. Thingol

each with a fixed arity.

Functions: top-level functions may have multiple equations, but are restricted to
left-linear constructor patterns in their arguments. In effect, multiple equations of the
same function thus implement another kind of case-expressions, and behave the same
as a function with just one equation containing a case-expression as their top-level
term.

Further unlike the λ-calculus style abstractions allowed in terms, functions can
introduce polymorphic types restricted by sorts in their argument’s types.

Type Classes: a type class c with superclasses c1 to cm defines a set of methods or class
parameters g1 to gn.

An instance κ sk :: c instantiates c for a concrete type constructor κ defines terms for
each of the instance parameters g1 to gn, assuming that the arguments αk of κ have sorts
sk. An instance declaration is only valid if instances κ zk :: ci for each superclass ci of c
such that each sj is a subsort for zk likewise exist.

The intended semantics of type classes is as in Haskell. In particular, it is guaranteed
that instances are unique, i.e. there will only be one instance of c for any constructor κ.
Further detail is given in (Haftmann 2009).

6

3. A Fragment of Go

Go is a high-level, statically typed language. However, it is not a functional language,
and differs in many aspects from the already-existing target languages of Isabelle’s
Code Generator.

However, many of the features unique to Go are not needed by the generator; since
the translation works as a shallows embedding into the target language, it suffices to use
those features of Go which can be used to represent the various statements of Thingol.
Only those will be presented in the following, along with—if necessary—discussion
why alternative features or other possible solutions were not persued.

In effect, this leaves many of Go’s more interesting features1 entirely unused. The
fragment used by the code generator could even be understood as a “functional subset”
of the Go language, meaning that it picks only those features that closely align with
those of the (functional) pre-existing code generation targets available in Isabelle as
well as those of Thingol.

1e.g. Channels or any kind of parallelism, Methods, any kind of variable mutation, the defer-statement.

7

3. A Fragment of Go

3.1. Syntax

Field name A
Function name f
Variable name x
Structure type name tS
Interface type name tI

Type parameter α

Type name t ::= tS | tI

Type τ, γ, σ ::=
Parameter α

Named structure type tS
[
τ
]

Named interface type tI
[
τ
]

Function head F ::=
[
α τI

]
(x τ) (τ)

Type literal T ::=
Structure struct

[
α τI

]
{A τ}

Interface interface
[
α τI

]
{}

Declaration D ::=
Type declaration type τ T
Function declaration func f F {s}
Variable declaration var x τ = e

Expression d, e ::=
Variable x
Function call f [α](e)
Structure literal ts[α]{e}
Function abstraction func F{s}
Select e.A
Type conversion τI(e)
Zero value *new(τ)

Statement s ::=
Expression return e;
Variable declaration x := e; s
if-Statement if (e) {s}; s
Type switch switch (x:= e.(type)) { case τ: s; default: s}

Package name n
Package url u ::= "ubase/n"
Package P ::= package n; import (u); D

8

3. A Fragment of Go

The syntax fragment given above largely follows that of Featherweight Generic Go
defined by Griesemer, Hu, et al. 2020, but differs in some important aspects:

1. methods are not used in favour of “normal” functions

2. Go’s syntactic distinction between expressions and statements in terms is pre-
served. However, it is always possible to use an expression in place of a statement
by using the s := return e; and to use a statement in place of an expression by
wrapping it into an immediately-called function with an empty argument list
e := func () τ { s }(). However, the latter additionally requires the type τ of
the statement s.

3. Many more forms of statements and expressions are described, in so far as they
are useful for translating Thingol’s language features into Go.

4. The syntax used for generics differs in some aspects as Griesemer, Hu, et al. 2020
was itself meant as a proposal of generic types for Go, written before they were
added to the language in Go 1.18 with a similar but not exactly the same design.

In the following, τ, γ and κ will always range over types, with τI denoting specifically
an interface type, and τS a structure type. Type parameters are always written as α,
expressions as e or d, and statements as s. The set of all declarations of a package will
be referred to as D. All packages live under the same base url ubase.

3.2. Declarations

A declaration D can be either a type declaration of a struct tuple or an interface
type, a function declaration, or declare a constant. The order of declarations does not
matter to the program; any constant defined in the same package may reference any
other.

Structure types: a declaration of the form type tS struct
[
α TI

]
{A τ} introduces a

new type constructor with fields A of types τ to the program. It may be polymorphic
an take type arguments α constrained by the interfaces TI ; the α can be freely referenced
withing the τ types.

However, in the fragment used by the code generator, no way to actually constrain an
interface is included; thus in effect, all the α are unconstrained type parameters which
can be instantiated with any type, and all the TI are the unconstrained interface{}
(Section 4.7.1 will discuss why constraints by method are insufficient to represent type
class constraints).

9

3. A Fragment of Go

Interface types: a declaration of the form type tI interface
[
αTI

]
{} introduces a

new interface type to the program.
In real-world Go code, such types are used to hold values of which nothing is

known except that they fulfill the constraints given defined by the interface2. However,
since in the given fragment all interfaces are the same unconstrained interface, all
interface types, while distinct still from each other, are in effect “any” types which can
hold values of arbitrary types. The type parameters α thus become little more than
decoration, used only to retain a sense of the translated Thingol constructions within
the generated Go.

At this point it may seem worth asking: Why not use interfaces as more than anno-
tated any-types? In principle, an interface in Go can contain two forms of constraints:
contraints by method, and constraints by type (Go Team 2022). Unfortunately, neither of
them is useful for our case: interface types are restricted to basic interfaces, that is, they
can only be constrained by methods, not types. Unfortunately, as will be discussed in
Section 4.7.1, we also cannot use methods to represent type classes. Thus only the bare
unconstrained interface remains in our target fragment.

Functions: a declaration func f F { s } introduces a new function called f with
head F of the form

[
α τI

]
(x τ) (γ) to the program. The type parameters α are

nominally constrained by the interfaces types τI , and can be mentioned within both
argument types τ and the return types γ

Unlike in Thingol, a function cannot have multiple equations, just one list of argument
names contained in the head, which are all in scope for the only function body s. Type
variables

An unusual feature of Go is its concepts of functions which return more than one
value:

func foo() (bool, int, string) {
return false, 42, "bar"

}

func main() {
x, y, z := foo()

}

Figure 3.1.: An example definition of a function which returns values of three different
types, and a call to it from within main.

2e.g. most commonly that a given method is implemented for the inner value’s type

10

3. A Fragment of Go

At first glance this might seem analogous the tuples present in Standard ML, with
foo() returning a single value of the tuple (bool, int, string). But this is not the
case, as Go has no concept of tuples. Instead, the function itself returns multiple values,
which must be immediately assigned names (or discarded) at the function’s call site.
Thus a call like

func bad() {
no_tuples := foo()

}

is not allowed given the above definition of the function foo.

Top-level variables: Variables can be declared at the top level of a program with a
declaration of the form var x τ = e, binding the name x to the evaluated form of the
expression e of type τ.

Since the fragment of Go used by the Code Generator does not contain assignments
to already-defined variables (nor any other form of mutable variables) the name x can
be taken to be a top-level constant, which can be used throughout the program.

Unlike top-level functions, variables declared in this way do not take any type
parameters and can thus not be polymorphic.

3.3. Expressions

Expressions e can have several forms: variables, function application, and function
abstraction are familiar from the polymorphic lambda calculus3. The others may require
a bit more explanation:

Structure literal: a literal of the form ts[α]{e} gives a value of the struct type with
name tS applied to type arguments α, i.e. it produces a new value of the type ts

[
α
]

in
which the fields are set to the evaluated forms of the expressions e.

Structure literals must always fully satisfy the fields of the structure type; partial
application is not allowed. Note that the field names present in the declaration of a
struct type are absent: while they could be used, Go does not require them. In the
interest of shorter code, they are therefore omitted from the code generator’s fragment.

3As with top-level functions, function abstractions declared within expressions can, in principle, return
multiple values. However, this is never done in code generated from Isabelle, and is therefore elided
here.

11

3. A Fragment of Go

Field Selection: an expression e.A selects the field named A of an expression e which
has a fitting struct type τS which was declared with one of the field names set to A,
and returns the value of that field.

Notably, this is the only place outside the structure type’s declaration that the field
name is ever required to be used.

Type conversion: an expression τI(e) evaluates to a value of the interface type τI

which contains the evaluated form of e as its inner value.
The original type σ of e is kept and will not be erased at run time; it can be recovered

using a type switch statement, see Section 3.4.

Zero value: the expression *new(τ) will always produce a value of type τ “out of
nothing.”

This is possible since Go defines a well-known zero value for all types possible to
define (Go Team 2022).

• for booleans, the zero value is false

• for interface types, it is the special value nil

• for structure types, it is constructed recursively: the zero value of a structure
type’s value has all its field set to their zero values

In this work, the precise value returned by *new(τ) will never be important; the code
generator only uses it in situations where the value it returns is never used, but a value
is still required to satisfy a language construct.

3.4. Statements

As with expressions, statements can be one of many possible forms. The following only
introduces those needed for Isabelle’s code generator. All statements of the defined
fragment will necessarily always end in a return and thereby return from the current
function (unless they also abort the entire program). This is done so it is always possible
to embed a statement back into an expression by wrapping it into an immediately-called
function abstraction func () τ { s }().

All forms except for the type switch should be immediately familiar from similar
languages.

12

3. A Fragment of Go

return: evaluates one or more expressions e, then returns from the current function.
The number of expressions given must match the number of return types given in the
function’s head.

if-Statement: a statement of the form if (e) { s1 }; s2 will evaluate the e which
most be of the built-in type bool. If it evaluates to the built-in value true, then s1

is evaluated; since all statements must end in a return, it will then return from the
current function. Otherwise, s2 is evaluated and does the same.

This statement could thus equivalently be written as if (e) { s } else { s2 },
which acts the same way. The version without the explicit else branch is preferred to
limit nesting of statements in the generated Go code.

Type switch: a statement switch (x := e.(type)) { case σ: s1; default: s2 }
can be thought of as the reverse operation of type conversions (Section 3.3): for
an expression e of an interface type τI , s1 will be executed if the inner value contained
within the interface value has type σ. If not, the default branch s2 is executed instead.

Within the statement s1, the variable x is bound to the inner value of e.

3.5. Packages

A set of declarations D must always live in a package, which may import other packages
and thereby make their declarations available to use (under names qualified with the
other packages’ names) within the D.

Packages are referred to by URLs; in general, the intention is that a package referred
to by a URL u can be found via an HTTP request to u.

Within the fragment of Go used by the code generator, all packages live as subpaths
under a common base URL ubase. This allows for convenient mapping of Isabelle’s
theories to packages, and to define a go module (a concept entirely distinct from a Go
package) to allow for local compilation of all generated packages.

3.6. Built-in Functions

Generally, the shallow embedding of Thingol code into Go produces code with almost
no dependencies on pre-existing constructs in Go other than the bare language features;
without the adaptation layer described in Section 5, the translation “brings everything
it needs,” even basic constructs such as boolean types or negation.

In fact, there are only two function names we assume exist on the Go side, both of
which are built-in and in scope by default in every Go package that can be defined:

13

3. A Fragment of Go

• the panic function, which will abort the program immediately with an error
message, is used to abort translations of case-expressions in which no clause has
matched, and to implement functions with no equations.

• the boolean operator for conjunction && is used to reduce nesting in translations
of pattern matches, as discussed in Section 4.5.

14

4. Code Generation

4.1. Names

4.1.1. Renamings

Identifiers in Go may contain any Unicode characters, but must start with a letter (Go
Team 2022). Since this is a superset of the names allowed in Thingol, it might appear
names can be kept unchanged. But a few adjustments do have to be made:

Reserved words: Names which happen to also be reserved words in Go (but not in
Isabelle) must be renamed.

Top-level Identifiers: The initial letter of all top-level identifiers in all modules is
transformed to be uppercase (if it is not already).

This is done since an identifier’s first letter carries meaning in Go: if it is uppercase,
it signifies this constant should be public, i.e. it will be exported and made available to
other packages if they import the package the constant is defined in. Names starting
with a lowercase letter are not exported.

Since the code generator will, whenever possible1, preserve the module structure of
the given Thingol code by creating an individual Go package for each Thingol module,
this is done for all names, even those not explicitly listed in the export_code command.

Names bound within terms as well as type variables are not touched by this renaming.

Names reserved by the generator: To implement destructors for data types, the Go
Generator creates additional top-level functions, whose names end in _dest. User-
defined names which share this postfix must thus be renamed to avoid collisions.

This renaming scheme is applied by Isabelle’s code generation framework during the
translation to the intermediate Thingol representation. In the following sections, it is
thus always safe to assume that all names of top-level constants start with an uppercase
letter, and that no name will collide with a reserved word.

1Unfortunately, circular imports are not possible in Go.

15

4. Code Generation

4.1.2. Optional names

Variable names are optional in Thingol2, and can be omitted in function arguments
or in the patterns of a case expression, indicating that this value is discarded and not
used.

Whenever this is the case, such names are translated to Go’s blank identifier “_”.

4.2. Types

τ ::= κ τn | α :: s

Given a type τ in Thingol, we can construct its translation type(τ) in Go as follows:

Bound names if τ is a bound name α, its name is kept3 in Go, and type(τ) is thus the
generic type variable with the same name.

If τ is a composite type κ τn which applies a constant type with name κ to type
arguments τn, its translation is a (potentially generic) type, with type(τi) as its generic
type arguments. Note that if n = 0, i.e. there are no type arguments, then the type
argument list must be omitted on the Go side.

type(α :: s) = α

type(κ) = κ

type(κ τi) = κ[type(τ)i]

The only types integral to the code generator’s functioning which require further special
handling are function types, which are translated into equivalent types of function
pointers in Go. Thus, a function type τ → γ becomes func (type(τ)) type(γ) in Go.
No effort is made to uncurry curried function types: while generally not idiomatic,
curried functions in Go work as they do in Thingol4.

Of course, further adaptations can be made to the translation of types: for example,
it can be desirable to translate the number and string types used in Isabelle to those
habitually used in Go, greatly improving performance. Such adaptations are not built-in
to the generator, but use the code_printing facilities provided by the code generator. A
basic example of such adaptions for Isabelle/HOL is described in Chapter 5.

2i.e. they are represented by a value of vname option.
3of course transformed by the renaming scheme described in Section 4.1.
4This is in contrast to functions bound at a module’s top-level, which the generator does uncurry,

compare Section 4.6. Fortunately, we never need to explicitly print their types.

16

4. Code Generation

In the remainder of the chapter, we will informally equate Thingol types τ with their
Go translation type(τ) and write both simply as τ. It will of course always be clear
from the language τ is used in which of the two is meant.

4.3. Terms

t ::= f [τ] | x :: τ | λx :: τ. (t :: ρ) | t1 t2 | case t :: τ of
[
p → b

]
Figure 4.1.: Definition of Thingol’s terms.

Terms are not quite as easily dealt with: instead of just one translation schema type(τ),
we need two mutually recursive ones called expr and stmt.

The first is meant to produce Go expressions, the second (possibly multiple) Go
statements ending in a return; the intended relationship between these two functions
can be taken as:

stmt(t) ≡ return expr(t);

expr(t) ≡ func() τ {stmt(t)}()

Of course, the above cannot be taken as an actual definition; it is merely meant to
suggest the semantics of the code which both functions produce. In fact, in the interest
of readability of the generated code, neither of the above equivalences is actually true.

In the following, often only one of stmt or expr will be defined explicitly for a
language feature of Thingol. It should then be understood that the other is implicitly
defined using the appropriate equivalence above.

4.3.1. Constants

t ::= f [τn]

Since even a bare constant f [τn] (be it a function name or data constructor; in Thingol,
these are treated the same) may carry type arguments τn or make use of a type class
instance, which will need to be translated into an explicit dictionary value passed to it
as an argument (as will be discussed in Section 4.7.2), it is translated the same as an
application with an empty argument list.

Conversely, top-level constants which are not functions must of course always be
translated as functions into Go, even if these then have an empty argument list (see
Section 4.6).

There is one exception: constants meant to abort the program if encountered are
handled seperately and translated directly to an invocation of panic (see Section 5.2).

17

4. Code Generation

4.3.2. Bound Variables

A variable x :: t with name x is translated to the variable with the same name in Go:

expr(x :: t) = x

Variables used in terms (and not patterns as in Section 4.5) must always have names;
if the term _ is ever encountered, this implies an internal error in the earlier translation
to Thingol, and code generation will abort.

4.3.3. Abstractions

The translation of a lambda-abstraction λ(x :: τ). (t :: γ) is again straightforward:

expr(λ(x :: τ). (t :: γ)) = func (xτ) γ {stmt(t)}

As with function types (see Section 4.2), no effort is made to uncurry nested abstractions.

4.3.4. Applications

Unfortunately, applications t1 t2 are more tedious to translate:

Uncurrying: since the definitions of top-level functions are uncurried (see Section 4.6),
it must first be checked if the term is a (potentially curried) application to a constant,
i.e. if t1 t2 has the shape

(
· · · ((f [τi] a1) a2) · · ·

)
an where f references a top-level

function taking m arguments.
If it is not, then the translation is very simple:

expr(t1 t2) = expr(t1)(expr(t2))

If it does, the translation becomes a lot more involved.

η-Expansion: if n is less than m, the entire term is η-expanded until the application is
fully satisfied.

Immediate arguments: a1 to am will be called the application’s immediate arguments.
Any remaining am+1 to an are curried arguments, which are each applied separately.

In effect, this assumes that f [τi], when called, will return a (curried) function; since
the intermediate representation is itself well-typed, this is insured to always be the case.

18

4. Code Generation

Type arguments: although Go can often infer generic type parameters during com-
pilation, this is not always the case. In particular, the way data types are translated
make it impossible, since all data types are translated as equivalent unconstrained
interface{} types (see Section 4.4).

Type class dictionaries: as described in Section 4.7.2, the dictionary-translation
method used to represent Isabelle’s type classes and locales in Go may introduce
additional (value-level) parameters for a function, and corresponding additional pa-
rameters d1 to dr to each application of the same function. As described in Section 4.6,
these are inserted in front of the user-defined parameters an.

Functions: Altogether we arrive at the following scheme in case c is a top-level
function:

expr(t1 t2) = f[τ1,. . .,τi](d1,...dr,a1,...,am)(am+1)...(an)

Data type constructors: if f references a data type constructor for type κ, the transla-
tion is slightly different

1. Since the individual constructor is represented as a struct, its arguments must
be put within curly braces instead of brackets.

2. Since the data type δ itself is represented as an interface type which may contain
any of a list of individual struct types corresponding to each of its constructors,
the entire call must be wrapped into a type conversion to type φ:

expr(t1 t2) = κ(f[τ1,. . .,τi]{d1,...dr,a1,...,am})(am+1)...(an)

4.4. Data Types

data κ αk = f1 of τ1 | · · · | fn of τn

Figure 4.2.: Definition of Thingol’s data types.

A data type κ defined in Thingol consists of a list of names for type parameters α1 to αk
as well as a list of constructors fi.

Since Go has no comparable concept of types with multiple (or no) constructors, each
fi will be translated into its own separate struct type φi. If the number of constructors

19

4. Code Generation

is exactly 1, then ci is also used to translate the type κ itself; if it is not, an additional
interface type is generated for δ to represent values of any of the constructors.

As discussed in Section 3.2, all interface types in the code generator’s fragment of Go
are the same (up to their type parameter lists) and function only a kind of annotated
“any”-type which can hold values of an arbitrary type.

Within Go, there is thus no language-based guarantee that a value x of type κ was
actually constructed using one of the constructors fi, i.e. that the inner value of x
actually is of one of the types φi.

Since the generator operates only on (assumed to be type-correct) intermediate
Thingol code, it will still never produce erroneous code; however, programmers must
be careful not to pass values of a wrong type when writing Go code meant to interact
with the generator’s output.

4.4.1. Constructors

Constructing a struct type for an individual constructor is very simple: a constructor
f with fields of types τ1 to τi is translated into Go is simply a struct with the same
name and fields:

type c struct {A τi}

where the Ai are newly-invented names for each of the fields, as no field-names are
present in Thingol.

4.4.2. Destructors

Along with each constructor’s struct type, the translation generates a destructor func-
tion f _dest which will be used as a helper function in the translation of Thingol’s
case-expressions described in Section 4.5.

func f_dest (p κ) (bool, τ1, . . ., τn) {
switch q := p.(type) {
case c:
return true, q.A1, . . ., q.An

default:
return false, *new(τ1), . . ., *new(τn)

}
}

The above uses two somewhat unusual features of Go which are not present in Thingol
which were mentioned in Chapter 3:

20

4. Code Generation

• Functions with multiple return types: as is idiomatic in Go, the first return value
indicates whether the operation was successful (here that means the interface
type’s inner value matched the constructor’s structure type). If it did, the function
will return all the fields of this value’s constructors, which are then be bound to
local names at the destructor function’s call site.

• If the constructor could not be matched, the first return value will be false.
However, to satisfy the function’s signature, all the other return types must
equally be given values, even if these will never be used. Thus for all other return
types, the function returns its zero value, which can always be synthesised “out
of nothing”.

4.4.3. Field Names

Since Go allows constructing a value of a structure type without explicitly giving the
field names explicitly (compare Section 4.3.4), and Thingol’s only way to access a field’s
values is to bind it to a new name using a case-expression, which is translated using
the destructor functions f _desti (see Section 4.5), the names Ai are never used in code
other than the structure type’s declaration and its destructor function.

They are thus entirely unimportant; the only requirement imposed on them is that
each Ai of the same struct is distinct and starts with an upper-case letter, to ensure
that the field is accessible when imported into another Go package.

4.5. Case expressions

Thingol’s case-expressions implement pattern matching on a value, in a way which
will be immediately obvious to readers familiar with other functional languages such
as Standard ML or Haskell: they inspect a term t called the expression’s scrutinee and
match it against a series of constructor patterns pn. As a whole, the term then evaluates
to the term bi of the first matching pattern pi. If none of the clauses match, the program
will abort as a whole.

case t :: τ of
[

p → bn

]
Figure 4.3.: Thingol’s case expressions.

Each clause pi → bi consists of two terms: the first is itspattern, the second the term to
be evaluated if pi matches the target value t.

21

4. Code Generation

Types of Patterns: The pn may only contain three kinds of terms:

• a variable name x.

• a data type constructor c of a data type κ by itself.

• a fully satisfied application of a data type constructor c (but not a variable name)
with arity k to other patterns s1, . . . , sk.

The latter two kinds we will call proper patterns.
Since Go has no comparable feature, a proper pattern in an case-expression is trans-

lated into a series of (possibly nested) if-conditions and calls to destructor functions.
The body of the innermost if-condition is stmt(t), which ends in a return-statement;
thus if the pattern could be matched, further patterns will not be executed5. If the pat-
tern did not match, execution will continue with either the next block of if-conditions
generated from the next clause, or encounter a final catch-all call to Go’s built-in panic
function, which aborts the program in case no clause could be matched.

4.5.1. Let-Bindings

The simplest case-expression consists of a single pattern p which itself consists of a
single variable name x. In effect, it simply binds t to a new name, as a let-binding
would in other languages.

Thus we can directly generate the corresponding variable declaration in Go:

expr(case t :: τ of x → b) = {x := expr(t); stmt(b)}

4.5.2. Proper Patterns

p = f [τi] [sk]

A proper pattern consisting of either just a constructor f or of f applied to sub-patterns
s1 to sk deconstructs a value of type κ.

Constructors: If all sub-patterns sk are variable bindings, then checking whether
the constructor matches the given value using the deconstructor function f _dest is
straightforward:

stmt(f [τi][sk] → b) ={m,A1,. . .,Ak:= f_dest(t); if (m) {stmt(b)}}

5of course, using return in this manner implies that a case-expression must always either stand at the
tail of a function, or else be wrapped into its own function if it does not.

22

4. Code Generation

For any of the sub-patterns sk which are variable names, we can set the corresponding
Ak to the same name. Nothing more needs to be done for these; within the pattern’s
body, these are now properly in scope (if any of the variables use the blank name, it is
mapped to the blank identifier “_” in Go, which likewise introduces no new variable).

Proper sub-patterns: It then remains to check that all the sub-patterns sk which are
proper patterns likewise match their target value which is now bound to the (newly
invented) corresponding variable names Ak.

These are translated in the same way, but “pushed inwards” into the body of the
if-statement generated above:

stmt(f [τi][sk] → b) ={m,A1,. . .,Ak:= f_dest(t); if (m) {inner}}

where
inner = stmt(case A of s → k b)

i.e. the sub-patterns are treated as if they were further nested case-expression withing
the outer one’s body.

Within the innermost if, the body b of the pattern’s clause is put as stmt(b), to
ensure it returns from the current function if it was reached.

4.5.3. Reducing the number of nested if

The above is already enough to translate arbitrary patterns, but at the price of potentially
exponential code blow-up: even a single pattern consisting of just a constructor and
k fields, none of which are proper patterns, will still produce k levels of nested if-
statements; if instead the fields themselves are again data type constructors with
sub-patterns, the number of nested levels quickly increases further.

While this blow-up is unavoidable in general, it can still be reduced: for si which
consist of just a data type constructor (i.e. a constructor which has no fields), its call
to the destructor function and if can be replaced by just a check for equality, inserted
into the next-outer if.

check(si) = (si == Ai)

checks(p) = check(si) && . . .

stmt(f [τi][sk] → b) ={m,A1,. . .,Ak:= f_dest(t); if (m && checks(f [τi][sk])) {inner}}

The worst-case of potential code blow-up for deep patterns of course remains the same;
however, in most “real-world” code, such situations are rare, and the above helps to
limit the size of the generated code.

23

4. Code Generation

4.6. Top-level Functions

Unlike lambdas that occur within terms, top-level functions in Thingol can have
multiple clauses and pattern-match on their arguments, neither of which is supported
in Go. It is thus necessary to translate them differently: all equations of the same
function will have to be merged, with the pattern matching on their parameters again
“pushed inwards” into the then combined, single function body.

Further, treating them differently from in-term lambda expression also allows the
generator to uncurry them, creating code that is much closer to an idiomatic style in
Go.

fun f :: ∀α :: sk.τ1 → · → τm → γ where
f [α :: sk] p1m = t1

| . . .
| f [α :: sk] pnm = tn

Figure 4.4.: A top-level function in Thingol, with multiple equations.

Type Arguments: while kept almost as they are in Thingol, all information on the
sorts sk of type parameters αk (that is, their type class constraints) is lost entirely; every
parameter is translated as an unconstrained interface{}.

Instead, type classes are translated via the explicit dictionary-construction method
(see Section 4.7.2).

Merging multiple clauses: All parameters of functions must have names in Go, and
be annotated with their type. Thus if any of the parameters patterns pi is a proper
pattern, a fresh name xi for it is invented. Likewise, if a parameter is a variable binding
instead of a proper pattern, but has multiple different names in two clauses, the name
xi used in the first clause is picked as the name of the parameter in Go.

Additionally, further arguments dj with types δj not present in Thingol may be
introduced by the dictionary construction used to represent type classes, as described
in Section 4.7.2.

Pattern matching: The combined function body then consists of a pattern match
translation as described in Section 4.56. Each equation is then treated as a clause of an
imagined case-expression; since functions can pattern match on multiple parameters,

6The already-existing Scala target uses a similar transformation.

24

4. Code Generation

we again “push inwards” and translate as if a nested series of case-expressions were
present.

func f[αk](d δj, x τm) γ {
stmt(case x of p → m t1)

}

Figure 4.5.: A function with only one equation, translated using pattern matching.

4.6.1. Top-level Variables:

The attentive reader may have wondered what happens with Isabelle definitions such
as

definition a :: nat where
a = 10

or more generally

definition t :: τ where
t = . . .

that is, top-level declarations which define constants that are not functions. Unfortu-
nately, there is no better solution7 than to treat these as top-level functions which take
no arguments at all (i.e. an empty list), which must be called explicitly each time they
are used.

While this changes nothing of the semantics of the translated program, it does incur
a (potentially significant) runtime cost.

4.6.2. Empty Functions

A particular oddity of Thingol is that it allows functions which have no clauses at all. An
example familiar to anyone who has worked with Isabelle/HOL is HOL.undefined.

In such cases the generator will produce a function with an empty argument list,
containing nothing but a call to Go’s built-in panic(), which will abort the program.

7Go does allow top-level variable declarations, but only for monomorphic types, and it disallows function
calls in their definitions.

25

4. Code Generation

4.7. Type Classes

4.7.1. Why Interfaces are insufficient

It will initially appear tempting to translate type classes directly into interfaces, since
they share many of the same features, and are sometimes considered near-analogous
features (for example in Ellis et al. 2022).

Strikingly, both can be used to constrain type arguments by requiring a set list of
functions to be available for a polymorphic type, regardless of which concrete type it
will be instantiated with.

Unfortunately, this is not possible, as functions in an interface are limited to methods,
which must dispatch on an (explicit) value (Go Team 2022)—thus they must always
take at least one value-level argument of the type the interface is associated with. A
type class in Isabelle such as

class foo =
fixes foo :: unit ⇒ ′a

or even

class bar =
fixes bar :: (′a ⇒ ′a) ⇒ unit

is therefore not easily translatable using interfaces, as the methods f oo and bar lack a
parameter of type ′a to dispatch on.

4.7.2. The Dictionary Translation

Instead, we use Thingol’s provision for languages with no feature equivalent to Is-
abelle’s type classes. This resolves all type class constraints during translation and
replaces the implicit dictionaries of functions given by type classes by explicit values of
dictionaries, which are represented as one data type per type class.

This translation is already integrated into Thingol, and is also used in the generator
for Standard ML (Haftmann and Nipkow 2010); thus only relatively few things are left
for the Go generator to do:

1. declare a data type for each type class, called its dictionary type

2. translate type class constraints on functions into explicit function arguments of
dictionary types

3. translate type class instances into either a value of the type class’s dictionary type,
or, if the instance itself takes type class constraints, to a function producing such
a value when given values of dictionary types representing these constraints.

26

4. Code Generation

4. any time a top-level function is used, the already-resolved type class constraints
must be given as explicit arguments (see Section 4.3).

4.7.3. A Dictionary type

class c ⊆ c1 ∩ · · · ∩ cm where
g1 :: ∀α :: c. τ1, . . . , gn :: ∀α :: c. τn

We can translate a class c into a struct type which has one field for each super class
cm, and one field per each class parameter gn. Types of the fields cm are themselves
dictionary types which represent the super classes; since these are translated the same
way into top-level type names, it suffices to put each class’s name.

type c[a] struct {
c1 c1[a],
. . .
cm cm[a],
g1 τ1,
. . .
gn τn,

}

The types τj for class parameters are again uncurried in the same manner as those of
top-level functions:

• if τj is already a function type, it is uncurried

• if it is not already a function type, func() τj is used instead

This allows translating the individual class parameters used in instances in the same
way as other top-level functions (see Section 4.6), as their types will match.

27

4. Code Generation

4.7.4. A Dictionary value

inst κ α :: sk :: c where
g1 [κ α :: sk] = t1, . . . , gn[κ α :: sk] = tn

Figure 4.6.: An instance gives values for the instance parameters gj for a concrete
constructor κ. Through the sk it can implicitly depend on instances for the
types αk. Additionally, in instance requires instances for κ of all superclasses
cm of c.

All terms in instance parameters are translated as their own top-level functions as
described in Section 4.6; to translate an instance, it thus only remains to assemble an
appropriate value of its dictionary type cκ.

Top-level binding: If the type constructor κ takes a non-zero number of arguments
αk, then the instance cannot be translated as a single constant, as its value would not be
monomorphic; instead the instance is translated as a function, which must be given
explicit type arguments to produce the required (then monomorphic) value. Further,
if the sorts sk of the αk contain any type class constraints δj, these must be added as
arguments to that function, since they are required to satisfy type class constraints of
instance parameters.

Instance Parameters: The fields gn are set to their corresponding function names. If
any of these functions themselves take dictionary arguments, these must be partially
applied (and thus the whole term η-expanded) to yield a term of the required type τn.

The only dictionary types which can occur here will be of the types δj, thus fitting
values are always available.

Super classes: Conversely, the fields cm must be set to a value of the super class’s
dictionary type c_κm. Since the corresponding instance is translated in the same way,
such a value will be available either as a top-level constant cm_κ, or (if this instance
was translated into a function) by calling the top-level function cm_κ with appropriate
arguments.

28

4. Code Generation

var c_κ = c[κ] {
g1: g1, . . ., gn: gn,
c1: c1_κ, . . ., cm: cm_κ,

}

func c_κ[α interface{}](x δj) c[κ[α]] {
return c {

g1: g1, . . ., gn: gn,
c1: c1_κ, . . ., cm: cm_κ,

}
}

Figure 4.7.: Translation of class instances as top-level variable and function.

4.8. Unused Variables

Unlike most other languages which will (at most) warn the programmer if a variable
was declared but then never used in subsequent code, Go strictly prohibits any unused
variable declarations, and will abort compilation if any are present. There is no option
to relax this behaviour (Go Team 2023); however, it suffices to “use” a variable n by
assigning it once to the blank identifier, which otherwise has no effect:

n := . . .
_ = n

Figure 4.8.: Go will consider n as used in the above.

Thus code generation must always be careful to either never introduce such an
unused variable (lest its output will be useless without manual edits), or if it does,
additionally generate such an assignment to the blank identifier.

Luckily, in almost all cases, unused name bindings are already marked as such by in
the generated intermediate Thingol8.

This is not the case for argument names of functions. Here the translation has to
traverse the function’s body once to collect all variables used therein, and then replaces
all unused argument names by the bank identifier in the generated code.

8i.e. their variable name will be set to NONE.

29

4. Code Generation

4.9. Packages

The structure of Isabelle Theory files is preserved in Thingol as modules, which the
generator maps to Go’s packages. Perhaps confusingly, Go also has a concept of a module,
which is not related: while a package defines constants in its own namespace which can
be imported into other packages, a module groups several packages under a common
URL.

Again there is not much for the Go Generator to do: the graph of imports is already
resolved in Thingol. The generator merely has to produce one Go source file for each
of Thingol’s modules and translate the list of imports to import statements in Go.

Since during translation all top-level names were changed to be upper case and thus
public (see Section 4.1), no further specification of which names precisely are to be
imported from a package have to be made.

The only slight complication is that Go does not allow importing paths relative to
the current source file, i.e. all imports must be referred to by an absolute URL, with
local packages being assigned a URL by the Go module of which they are part.

Thus if constants from several Isabelle different theories are exported into separate
Go, as in the following example, invoked in an imagined theory file Addition.thy:

fun add :: nat ⇒ nat ⇒ nat where
add x y = x + y

export-code add in Go (go-module example.org/isabelle)

the generator will additionally create an appropriate go.mod file, with the common base
URL of the created packages either set via the go_module option passed to the generator
or (if the option is not given) to the default dummy value isabelle/exported.
The above will thus produce a go.mod file as follows:

module "example.org/isabelle"

go 1.19

Figure 4.9.: An example go.mod file.

The generated module then contains two pacakges: one is example.org/isabelle/
Addition, corresponding to our source file, which itself imports the definition of natural
numbers from a second exported package example.org/isabelle/Nat:

30

isabelle/exported

4. Code Generation

package Addition

import (
"example.org/isabelle/Nat"

)

func Add (x Nat.Nata, y Nat.Nata) Nat.Nata {
return Nat.Plus_nat(x, y);

}

Figure 4.10.: The Addition package, as generated into the file Addtion/exported.go.
The Nat package will be generated into the file Nat/exported.go. The
go.mod file ensures that the Go tools will understand the relationship
between both.

31

5. Native Code Adaptations

To improve readability, efficiency and especially interaction with other code in the
target language that is not generated from Isabelle, the Code Generator supports an
adaptation layer which can be used to explicitly map specific types, data constructors,
and functions directly to corresponding constructs of the target language through a list
of printing rules.

Of course, such adaptations imply that any guarantee of correct-by-translation code
is necessarily abandoned: it is trivial to write a printing rule which causes the generator
to emit code which does not behave as it should, or even code that is syntactically
invalid in the target language!

However, compared to the pre-existing target languages, the capabilities of such
printing rules are more narrow when generating Go code: the code_printing machinery
does not know about the distinction between expressions and statements in Go. Adding
such support would require reworking how such rules are parsed, and how they interact
with the Standard ML code which implements the existing target languages.

Thus nothing of the kind was done, and printing rules in Go are (for now) limited to
target language constructs which use only expressions, not statements.

5.1. Isabelle/HOL

Thus the following only describes a very basic adaptation layer to use code generated
from Isabelle/HOL theories in Go.

Booleans: the type HOL.Bool is printed as Go’s built-in bool type, and constants
HOL.False and HOL.False as true and false respectively. Boolean operators can then
be printed as their Go counterparts:

• HOL.conj, HOL.disj, HOL.equal, and HOL.Not as &&, ||, ==, and ! respectively.

• Since Go has no built-in operator for boolean implication, terms HOL.implies a b
are printed as (expr(a) || !(expr(b)))

• By contrast, Isabelle’s if-then-else expressions are not handled specially, and
are still translated by using the pattern match translation given in Section 4.5,

32

5. Native Code Adaptations

as translating them using if-else-statements would require printing rules that
generated Go statements.

Unit: the unit type is printed as the empty struct type struct{}, and its only value to
the empty struct’s only value struct{}{}.

Strings & Characters: the type String.literal is printed as the built-in type string:

code-printing
type-constructor String.literal ⇀ (Go) string

| constant STR ′ ′ ′ ′ ⇀ (Go)
| constant plus :: String.literal ⇒ - ⇒ - ⇀

(Go) infix 6 +

Literal string values can then be printed as their (appropriately escaped, so as to not
interfere with Go’s syntax) versions.

setup ‹
fold Literal.add-code [Go]

›

Fundamental operations must then also be adapted: equality is mapped to the built-in
equality operator ==, string concatenation to the built-in +, etc.

5.1.1. Comparison to other target languages

The above-described adaptations are usable for many small-to-medium sized formalisa-
tions which are limit themselves to relatively basic types.

But compared to the adaptation layers for other target languages which come in-
cluded in Isabelle, its scope is very limited, and for many types there are no printing
rules at all:

• While it would be possible to translate tuples as anonymous structure types with
exactly two fields, doing so in Go would require type annotations in Go: for
example, a pair (false,"foo") could be translated as struct{A:bool,B:string}
{false,"foo"}. Unfortunately, code printing rules do not currently support
printing types.

• For now, even support for mapping integers to the arbitrary-precision integers
provided by the Go math/big package is missing, as it is not strictly required for
the code generator tests discussed in Chapter 6. However, adding such support
should be easily possible.

33

5. Native Code Adaptations

• Lists are likewise not supported, as Go lacks a suitable built-in type for linked
lists.

• The same holds for all of the formalisations included in HOL-Library as well as
Imperative-HOL.

Unfortunately, this means the adaptation layer is in a certain sense incomplete: it is
possible to write formalisations using Isabelle/HOL which can be successfully exported
to any of the pre-existing target languages, but for which translation to Go will either
produce very inefficient code or even—for example if it uses a function that was marked
as [[code drop]], and is represented via a printing rule in other languages, but not yet
in Go—fail outright.

5.2. Program-terminating Functions

A special provision is made in the generator to handle program-termination functions,
that is, functions which never return but instead abort the program. An example is
String.Code.abort or HOL.undefined.

The usual way of printing these into a target language is to replace them with
whatever built-in equivalent exists, for example Haskell’s error or undefined. This is
especially convenient since (in all previous target languages) these functions have an
unconstrained polymorphic type, and can thus be used anywhere within a term.

Unfortunately, not only is this not true of Go’s built-in panic, but no suitable function
can easily exist in Go: while functions can return an “unconstrained” generic type, using
such a function would require a type annotation, which a printing rule unfortunately
cannot provide.

Worse, the built-in panic returns no values at all, which is distinct from a function
returning a unit value of a unit type: Go does not allow such functions in expressions
at all, only in statements.

To work around this, the generator takes an optional argument panic_on, to which
a list of function names can be supplied which, if called, should abort the program.
Instead of the usual translation scheme for applications of constants described in
Section 4.3, it will then generate a direct call to panic as its own statement, along with
(if necessary) a series of assignments to the blank identifier as described in Section 4.8
for any variables used in the function’s arguments, to ensure they will not become
unused.

34

6. Evaluation

Viewed as a whole, the process of generating code from an Isabelle formalisation can
seem a little unsatisfying: usually, we begin by writing pristine code in Isabelle, where
we can formalise and prove (almost) any properties of the code’s behaviour that had
intended. We can then be sure that the code is, as-written, actually correct, in the sense
that even if it might show undesired behaviour, at least the theorems we have proved
over it will always hold true.

But then in the next step, this certainty is lost: any confidence in the generated code’s
complexity rest solely on the correctness of the translation, i.e. on whether or not a
particular part of the code generator contains a bug. In an ideal world, we would have
a formal proof that the translation is itself correct—but the lack of a clear semantics for
either Thingol or Go make it impossible to use anything but informal reasoning in its
place.

Thus this section will look at several ways of attempting to empirically test the genera-
tor’s output: via a unit-test approach on an already-existing code base which had previ-
ously been used to generate Scala code in Section 6.1, via the HOL_Codegenerator-Test
session in Section 6.2, and finally by using Isabelle’s nitpick tool to automatically
generate test cases from theorems which were proven to hold over the Isabelle code in
Section 6.3. The last is a novel and still experimental approach, and not specific to Go
as a target language.

6.1. A Case Study

The code generator was used to translate an internal theory development at Giesecke
+Devrient advance52 based on Isabelle/HOL into Go. It had previously been used to
generate Scala code; additional wrapper code had also been written in Scala, along
with 10 unit tests checking for basic functionality.

As a simple evaluation of Go code generated from the same Isabelle theories, these
unit tests and the necessary wrapper code were re-written in Go, where they produced
equivalent results, and no bugs in the code generator or unintended behaviour of the
code it produced were found.

However, the task of porting the wrapper code from Scala proved to be error-prone:
many explicit type annotations are needed in the code (in particular, every usage of a

35

6. Evaluation

data type constructor requires at least one, compare Section 4.4), and not all mistaken
type annotations will cause compilation of the wrapper code to fail. Instead, if a
data type’s constructor is annotated with a different interface type, the assumption
underlying the translation of case-expressions will fail, resulting in an “match failed”
error at runtime.

6.2. HOL Codegenerator-Test

Isabelle’s distribution contains a HOL_Codegenerator-Test session which is used as a
self-check for the various target languages of the code generator. It contains two forms
of checks:

• An integration with the value command to evaluate terms within a running
Isabelle session using the code generator with a different target language. Addi-
tionally, a test_code command is provided, which executes individual test cases
in the target language.

• A single export_code command meant to “export all of HOL” to the target
language, as a stress-test for the code generator. This does not include any
checking for correctness of the generated code; the only tested property is that
the generator’s output is accepted by the target language’s compiler.

6.2.1. Integration into Isabelle

Until now, everything described in this work could exist outside of the Isabelle dis-
tribution itself, and indeed had been written as an entirely out-of-tree development.
However, using the HOL_Codegenerator-Test session requires the target language to
be available as part of HOL itself.

Thus a version of the Isabelle distribution, forked to include the Go target language
and rudimentary support for interacting with the Go compiler1 has also been created
as part of this work.

6.2.2. test_code

The test_code command defined in HOL-Library.Code_Test can be used for quickly
checking that neither the code generator nor an adaptation-layer printing rule went
wrong in a particular case.

As an example, the invocation

1Assumed to have been installed independently; no Go component for Isabelle has been written.

36

6. Evaluation

test-code 14 + 7 ∗ −12 = (140 div −2 :: integer) in Go

Would fail if the given arithmetic equation would not hold true on the Go side. test_code
accepts any term of type bool, which describes an assertion. It then checks that the
assertion still holds “on the other side”, i.e. that after translation into a target language
the term still evaluates to true.

Further, the HOL_Codegenerator-Test contains a simple test for each language, which
exports a gcd function computing the greatest common divisor of two natural numbers,
and checks several test cases for it.

test-code
gcd 15 10 = (5 :: integer)
gcd 15 (− 10) = (5 :: integer)
gcd (− 10) 15 = (5 :: integer)
gcd (− 10) (− 15) = (5 :: integer)
gcd 0 (− 10) = (10 :: integer)
gcd (− 10) 0 = (10 :: integer)
gcd 0 0 = (0 :: integer)

in Go

All of them succeeded when exported to Go. A command to automatically generate
test cases from Isabelle theorems extending on the test_code command is further given
in Section 6.3.

6.2.3. Exporting HOL

The theory HOL-Codegenerator_Test.Generate contains a catch-all export_code com-
mand which will attempt to export large parts of HOL-Library into all target languages
supported by the generator. This are no tests checking that the produced code shows the
desired behaviour; it is merely meant as a stress-test to check that a target language’s
compiler will at least accept the code generator’s output.

Unfortunately, this check currently still fails for the Go target, as it lacks an adaptation
layer of comparable scope to that provided for the other target languages, as was
discussed in Section 5.1.1.

6.3. Theorem-based Tests

The nitpick tool is a Kodkod-based counterexample and model finder for Isabelle/HOL
(Blanchette and Nipkow 2010) included in the Isabelle distribution. It is commonly
used during development of Isabelle theories to quickly check if a stated theory has a
counterexample and hence cannot be proved.

37

6. Evaluation

However, it can also be used to generate models of theorems that are known to be
correct, i.e. to simply create a list of variable assignments which satisfy a proposition.

Combining this with the test_code command discussed in Section 6.2, it is further
possible to use these generated models as test cases of the code generator:

lemma (x + y) = (y + (x :: int)) nitpick-codegen Go

The nitpick_codegen command above will generate possible variable assigments. For
the user, this is visible as output in Isabelle/jedit:

Nitpicking formula. . .
checking that 0 + 0 = 0 + 0 in Go . . .
checking that 1 + 0 = 0 + 1 in Go . . .
checking that 0 + 1 = 1 + 0 in Go . . .
checking that 0 + 0 = 0 + 0 in Go . . .
checking that 1 + 0 = 0 + 1 in Go . . .
checking that 1 + 1 = 1 + 1 in Go . . .
checking that 2 + 0 = 0 + 2 in Go . . .
checking that 0 + 2 = 2 + 0 in Go . . .
checking that 0 + 0 = 0 + 0 in Go . . .
checking that 0 + 1 = 1 + 0 in Go . . .

While this approach should be considered as merely an experimental proof of concept,
it can already be helpful when working with real-world code. Particularly when
writing code printing rules in the adaptation layer, it is useful in much the same way as
nitpick is when writing new propositions: it allows to quickly establish that something
“obvious” has gone wrong if it fails. Of course, it can never any guarantee of correctness
— many kinds of unsoundness in printing rules will not be found2.

Of course, this approach is necessarily limited in scope, since not everything that
might appear in an Isabelle proposition will be executable. Its usefulness is further
be limited, as nitpick often produces only relatively trivial variable assignments, and
often (as seen above) also generates duplicates.

2For example, consider attempting to map Isabelle/HOL’s int type to Go’s built-in int, which is either
32 or 64 bit wide. This would cause unsoundness, but nitpick_codegen will never try numbers large
enough to encounter an overflow.

38

7. Conclusion

I have presented a translation from Thingol by shallow embedding into a fragment of
Go, and implemented it as a target language for Isabelle’s code generation framework.
The new target language has been used with success to port an existing Isabelle
formalisation targeting Scala to also target Go.

It can be used either as an entirely out-of-tree development with a recent version of
Isabelle, or alternatively as an in-tree extension of Isabelle itself. In the latter case, it
is then also possible to use the HOL_Codegenerator-Test session and its commands,
particularly value and test_code, with Go.

Finally, a short sketch of an automated testing scheme making use of the Isabelle
formalisation to automatically generate test cases has also been shown.

Future Work

There are multiple interesting directions into which this work could be extended in the
future:

Given Go’s nature as a non-functional programming language which generally
encourages an imperative programming style, an obvious extension to the Go target
language would be to integrate it with Imperative/HOL (Bulwahn et al. 2008). Apart
from producing more easily readable code, this also has the potential to greatly increase
performance without sacrificing verified correctness by making use of other work in
this direction, such as the Imperative Collections Framework presented by Lammich
2019.

The adaptation layer’s power could be vastly improved by working on lifting some of
the current limitations of printing rules discussed in Section 5. In particular, allowing
placeholders in printing rules to distinguish between expressions and statements (thus
allowing the intuitive translation of if-then-else expressions to if-statements), as well
as making it possible to refer to a placeholder’s type (i.e. to allow constructs where the
target language requires explicit type annotations, such as polymorphic return types
in Go) would allow a much more powerful adaptation layer comparable to what is
currently provided for other languages, and will most likely be a precondition to let
the HOL-Codegenerator_Test.Generate theory’s catch-all export_code succeed for the
Go target (recall Sections 5.1.1 and 6.2.3).

39

7. Conclusion

Likewise, the generation of test cases from theorems presented in Section 6.3 could
be extended from the sketch of an implementation given there, and implemented as its
own tool that can be used independently from any particular target language.

Finally, the most obvious task left would be to integrate Go as a target language for
code generation into Isabelle itself, assuming there is interest in this from the wider
Isabelle community and the Isabelle maintainer. Initial work on this has already been
done, but many of the practical questions (such as how to invoke the Go compiler,
how to best provide a Go component setup analogous to the isabelle ghc_setup or
isabelle ocaml_setup tools) have not been resolved yet.

40

A. List of changes made to Isabelle

In the course of this work, several changes were made to Thingol itself. The two most
important ones both add more information present in Isabelle to the intermediate
language:

• Function Abstractions in terms are now decorated with their return types, which
was not previously the case (changeset #5016262a2384).

• Likewise, in the dictionary construction now always includes the target type of
any super instances referenced by a dictionary value (changeset #a6a81f848135).

Both represent minor incompatibilities in the Standard ML code of Isabelle compared
to previous versions, as the definitions of the Code_Thingol.iterm and Code_Thingol.
plain_dict types have changed slightly.

Other existing target languages, as well as other code within Isabelle and the AfP
(changeset #1d9151a74b81) working with these types, were updated accordingly, and
now simply ignore any values given in the new field.

One additional further change was made, fixing a bug:

• The export_code command did not work correctly when used with the file
option if the target language generated files in subdirectories. Since none of the
existing target languages required this, this had never been noticed, as it had not
previously been an issue (changeset #a11e25bdd247).

At time of writing, all these changes are already part of the main Isabelle Mercurial
repository on https://isabelle.sketis.net/repos/isabelle, and therefore included
in any recent development checkout.

41

https://isabelle.sketis.net/repos/isabelle

B. User’s Guide

In general, using the new Go target should feel no different from using one of the
pre-existing targets; users are therefore encouraged to refer to Haftmann, Bulwan, and
Nipkow 2022 for basic usage.

As a trivial example, a trivial use of addition on natural numbers

fun add :: nat ⇒ nat ⇒ nat where
add x y = x + y

export-code add in Go module-name Addition

will produce the following Go code:

package Addition

import (
)

// sum type which can be Zero_nat, Suc
type Nat interface {};
type Zero_nat struct { };
type Suc struct { A Nat; };
func Elim_Zero_nat(p Nat)(bool) {
switch p.(type) {
case Zero_nat:
return true;

default:
return false

}
}
func Elim_Suc(p Nat)(bool, Nat) {
switch q := p.(type) {
case Suc:
return true, q.A;

default:
return false, *new(Nat)

}
}

42

B. User’s Guide

func Plus_nat (x0 Nat, n Nat) Nat {
{
m, ma := Elim_Suc(x0);
if (m) {
nb := n;
return Plus_nat(ma, (Nat(Suc{nb})));

}
};
{
if (x0 == (Nat(Zero_nat{}))) {
nb := n;
return nb;

}
};
panic("match␣failed");

}

func Add (x Nat, y Nat) Nat {
return Plus_nat(x, y);

}

However, there are some things that are worth keeping in mind when working on an
Isabelle formalisation meant for generation of Go code:

• As was mentioned in Section 4.6.1, Isabelle definitions living at the top level will
be translated as constant functions which take no arguments, which are called
each time the constant is used. If the constant’s definition is complex and it is
used often, this may unnecessarily increase runtime.

• When writing wrapper code that creates values of data types, it is necessary to
explicitly add a type conversion statement to convert the structure type which
represents the constructor to the interface type which represents the entire data
type. This can be easily forgotten, but will otherwise lead to pattern matches
failing at runtime.

B.1. List of Target-specific Options

The export_code command supports target-language specific options. For Go, the full
list of accepted options is as follows:

• go_module should take a string that is a valid URL. Generated packages will be
assumed to live under this URL; a go.mod file for use with the go tools will be

43

B. User’s Guide

generated accordingly. If not given, a dummy value is used instead.

• gen_stringer takes no further argument. If present, it indicates that the code
generator should produce instances of the fmt.Stringer interface for all structure
types which represent data types. The functions for printing in the fmt package
(such as fmt.Printf) will then produce syntax closer to Isabelle’s for values of
these structure types.

• panic_on takes a list of function names which should abort the program entirely.
This behaves similarly to the [[code abort]] and [[code drop]] attributes, but
the precise implementation differs (compare Section 5.2)

44

Bibliography

Blanchette, J. C. and T. Nipkow (2010). “Nitpick: A counterexample generator for higher-
order logic based on a relational model finder.” In: Interactive Theorem Proving: First
International Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings 1.
Springer, pp. 131–146.

Bulwahn, L., A. Krauss, F. Haftmann, L. Erkök, and J. Matthews (2008). “Imperative
functional programming with Isabelle/HOL.” In: Theorem Proving in Higher Order
Logics: 21st International Conference, TPHOLs 2008, Montreal, Canada, August 18-21,
2008. Proceedings 21. Springer, pp. 134–149.

Ellis, S., S. Zhu, N. Yoshida, and L. Song (2022). “Generic go to go: dictionary-passing,
monomorphisation, and hybrid.” In: Proceedings of the ACM on Programming Lan-
guages 6.OOPSLA2, pp. 1207–1235.

Go Team (2022). The Go Programming Language Specification. Version of December 15, 2022.
url: https://go.dev/ref/spec.

Go Team (2023). FAQ: Can I stop these complaints about my unused variable/import? url:
https://go.dev/doc/faq#unused_variables_and_imports.

Griesemer, R., R. Hu, W. Kokke, J. Lange, I. L. Taylor, B. Toninho, P. Wadler, and N.
Yoshida (Nov. 2020). “Featherweight Go.” In: Proc. ACM Program. Lang. 4.OOPSLA.
doi: 10.1145/3428217.

Griesemer, R., R. Pike, K. Thompson, I. Taylor, R. Cox, J. Kim, and A. Langley (2009).
Hey! ho! let’s go. url: https://opensource.googleblog.com/2009/11/hey-ho-
lets-go.html.

Haftmann, F. (2009). “Code generation from specifications in higher-order logic.” PhD
thesis. Technische Universität München.

Haftmann, F., L. Bulwan, and T. Nipkow (2022). Code Generation from Isabelle/HOL
theories. url: https://isabelle.in.tum.de/doc/codegen.pdf.

Haftmann, F. and T. Nipkow (2010). “Code generation via higher-order rewrite sys-
tems.” In: Functional and Logic Programming: 10th International Symposium, FLOPS
2010, Sendai, Japan, April 19-21, 2010. Proceedings 10. Springer, pp. 103–117.

Hupel, L. (2019). “Certifying Dictionary Construction in Isabelle/HOL.” In: Fundamenta
Informaticae 170.1-3, pp. 177–205.

Lammich, P. (2019). “Refinement to imperative HOL.” In: Journal of Automated Reasoning
62.4, pp. 481–503.

45

https://go.dev/ref/spec
https://go.dev/doc/faq#unused_variables_and_imports
https://doi.org/10.1145/3428217
https://opensource.googleblog.com/2009/11/hey-ho-lets-go.html
https://opensource.googleblog.com/2009/11/hey-ho-lets-go.html
https://isabelle.in.tum.de/doc/codegen.pdf

Bibliography

Nipkow, T. and G. Klein (2014). Concrete semantics: with Isabelle/HOL. Springer. isbn:
3319105418.

Stack Overflow (2023). 2023 Developer Survey. url: https://survey.stackoverflow.
co/2023.

46

https://survey.stackoverflow.co/2023
https://survey.stackoverflow.co/2023

	Abstract
	Contents
	Introduction
	Motivation
	Structure

	Thingol
	Names
	Types & Terms
	Statements

	A Fragment of Go
	Syntax
	Declarations
	Expressions
	Statements
	Packages
	Built-in Functions

	Code Generation
	Names
	Renamings
	Optional names

	Types
	Terms
	Constants
	Bound Variables
	Abstractions
	Applications

	Data Types
	Constructors
	Destructors
	Field Names

	Case expressions
	Let-Bindings
	Proper Patterns
	Reducing the number of nested [language=Go]|if|

	Top-level Functions
	Top-level Variables:
	Empty Functions

	Type Classes
	Why Interfaces are insufficient
	The Dictionary Translation
	A Dictionary type
	A Dictionary value

	Unused Variables
	Packages

	Native Code Adaptations
	Isabelle/HOL
	Comparison to other target languages

	Program-terminating Functions

	Evaluation
	A Case Study
	HOL Codegenerator-Test
	Integration into Isabelle
	test_code
	Exporting HOL

	Theorem-based Tests

	Conclusion
	List of changes made to Isabelle
	User's Guide
	List of Target-specific Options

	Bibliography

