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Abstract

This thesis deals with the formalisation of some group-theoretic results in Isabelle/HOL –
an interactive theorem prover that machine-checks every proof step.

The results include the long-known and well understood fundamental theorem of finitely
generated abelian groups characterising the structure of finitely generated abelian groups as
a uniquely determined product of cyclic groups. Both the invariant factor decomposition
and the primary decomposition are covered. Additionally, some results from the field of
character groups are included, as well as work on formalising the direct product, the internal
direct product and more group-theoretic lemmas – on both the newly introduced definitions
and on already existing definitions from HOL-Algebra – the canonical Isabelle/HOL library
on abstract algebra.
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Kurzfassung

Diese Arbeit befasst sich mit der Formalisierung einiger gruppentheoretischer Ergebnisse
in Isabelle/HOL – einem interaktiven Theorembeweiser, der jeden Beweisschritt maschinell
prüft.

Die Ergebnisse umfassen den seit langem bekannten und gut verstandenen Fundamental-
satz der endlich erzeugten abelschen Gruppen, der die Struktur endlich erzeugter abelscher
Gruppen als eindeutig bestimmtes Produkt zyklischer Gruppen charakterisiert. Sowohl
die Zerlegung in invariante Faktoren als auch die Zerlegung in zyklische Gruppen von
Primpotenzordung werden behandelt. Weiterhin sind einige Ergebnisse aus dem Bereich
der Charaktergruppen enthalten, sowie Arbeiten zur Formalisierung des direkten Produkts,
des inneren direkten Produkts und weiterer gruppentheoretischer Lemmata – sowohl zu
den neu eingeführten Definitionen als auch zu bereits existierenden Definitionen aus
HOL-Algebra – der kanonischen Isabelle/HOL-Bibliothek zu abstrakter Algebra.
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1 Introduction

While reaching back to the very early 19th century and great names such as Évariste Galois,
Carl Friedrich Gauß and Felix Klein, the theory of groups forms a part of mathematics
that is still a highly researched topic today, with a broad field of applications in many
subjects (e.g. in cryptography).

One of the more recent discoveries is the classification of finite simple groups in
1981 – a huge combined effort of many mathematicians spanning thousands of pages [1].
Checking such a long and complex proof is at the same time intellectually demanding,
time-consuming and prone to mistakes.

A solution to this problem are machine-checked proofs, involving a computer checking
all proof steps and logical inferences for correctness. This way, when trusting the program
verifying the proof and checking both the stated theorem and the included definitions,
the correctness of a proof accepted by the program follows directly.

For a computer to reason about mathematics, at first it must be translated into
constructs suitable for computers – mathematics has to be formalised. This formalisation
and its feasibility have been of great interest since at least the beginning of the 20th
century and Hilbert’s Program aiming to formalise all of mathematics. However, with
Göbel publishing his incompleteness theorems [2], stating that any sufficiently strong
consistent logical system possesses undecidable theorems that can neither be proved nor
disproved, this program turned out to be unattainable.

Nevertheless, as experience has shown, a huge range of mathematics can – under the
assumption of certain axioms – be formalised without further problems, so that today there
exist several programs, called theorem provers or proof assistants, suitable for formalising
mathematics. One of them is Isabelle, a proof assistant with strong automation and the
support for several logics for reasoning within it, the most widespread choice being Higher
Order Logic (HOL).

In this thesis, I used Isabelle/HOL to formalise several results of group theory, extending
the spectrum of formalised theorems by the fundamental theorem of finitely generated
abelian groups and small parts of the theory of character groups. The code of this thesis
is available on both zenodo1 and github2 and will later be submitted to the Archive of
Formal Proofs.

The next chapter gives a short introduction to Isabelle and HOL-Algebra and introduces
some important definitions and notations used throughout this thesis. Furthermore, a
short overview of group theory in Isabelle/HOL, Lean, Coq and Mizar is given.

1https://doi.org/10.5281/zenodo.4744644
2https://github.com/jthomme1/group-theory-isabelle
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1 Introduction

Chapter 3 provides an overview of some group-theoretic notions and their formalised
equivalent.

In chapter 4, I include the formalised proof for the fundamental theorem of finitely
generated abelian groups in both its forms, as well as a section about the difficulties I
encountered during the formalisation of this theorem.

Chapter 5 deals with the application of the fundamental theorem of finitely generated
abelian groups in the context of character groups to prove, among other things, the
isomorphism of a group and its character group.

The last chapter summarises the results of this thesis and gives an outlook on future
work.
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2 Preliminaries

All of this work has been formalised in Isabelle/HOL 2021 [3].

2.1 Notation

• Throughout this thesis, I always write groups in a multiplicative way, including
abelian groups, using ⊗ inside of Isabelle listings and · outside.

• I refer to the order of a group G as |G|. If it is infinite, the order is by convention 0.

• In an Isabelle listing, whenever the underscore _ is used as a variable name, it
indicates an anonymous variable with no name, similar to many programming
languages.

• In order to denote the corresponding group in an ambiguous context, the group is
put in a subscript, e.g. 𝟭G for the neutral element of group G.

2.2 The Isabelle proof assistant

“Isabelle is a generic proof assistant. It allows mathematical formulas to be
expressed in a formal language and provides tools for proving those formulas
in a logical calculus.” ([4])

This quote states that it is possible to prove or disprove the correctness of a formula
expressed in a formal language understood by Isabelle. The most common choice is HOL
(Higher Order Logic) and this standard combination is then referred to as Isabelle/HOL1

This capability of Isabelle/HOL can then be used to formally prove the correctness of,
for example, programs or – as in my case – mathematics. However, Isabelle/HOL is not
the only proof assistant offering this functionality: Coq2, Lean3 and Mizar4 have similar
capabilities, posing the question about the advantages and disadvantages between these
different systems and what sets Isabelle/HOL apart.

One important aspect of the answer to this is the Isar-language [5] that – opposed to
the script-like proving in many other systems – allows the user to formulate their proof

1For reasons of convenience, I may refer to Isabelle/HOL as Isabelle in this work.
2https://coq.inria.fr/
3https://leanprover.github.io/
4http://mizar.org/
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2 Preliminaries

in a manner that makes it easier to maintain, more clearly structured and thus easier to
understand for the human reader – as it resembles a bit more the classical proof on paper:

lemma (in group) pow_int_mod_ord:

assumes [simp]:"a ∈ carrier G" "ord a ≠ 0"

shows "a [^] (n::int) = a [^] (n mod ord a)"

proof -

obtain q r where d: "q = n div ord a" "r = n mod ord a" "n = q ∗ ord a + r"

using mod_div_decomp by blast

hence "a [^] n = (a [^] int (ord a)) [^] q ⊗ a [^] r"

using assms(1) int_pow_mult int_pow_pow

by (metis mult_of_nat_commute)

also have "… = 𝟭 [^] q ⊗ a [^] r"

by (simp add: int_pow_int)

also have "… = a [^] r" by simp

finally show ?thesis using d(2) by blast

qed

Listing 2.1: Example of a proof in the Isar style. Details in [3]

Another argument in favour of Isabelle is its strong proof automation, indispensably
assisting the user in his formalisation. Together with a coupling to a wide range of solvers,
bundled by the tool sledgehammer [6], it notably shapes the formalising experience towards
more productivity.

2.2.1 Archive of Formal Proofs

The Archive of Formal Proofs (AFP) ”is a collection of proof libraries, examples, and
larger scientific developments, mechanically checked in the theorem prover Isabelle” [7].
Although it is already of respectable size with 597 entries and almost 3,000,000 lines of
code [8], it is still very incomplete in comparison to all known mathematics.

In the domain of groups, even though there is some central work available such as
Zassenhaus’s theorem and the Jordan–Hölder theorem [9], the archive still lacks some
essential results like the fundamental theorem of finitely generated abelian groups – an
important theorem describing the structure of a certain type of groups with applications
in, for example character theory.

With this work I intend to fill this gap.

2.2.2 Miscellaneous definitions and notation

Brackets around assumptions

One syntactical characteristic of Isabelle is the way to write chained implications:

A ⟹ B ⟹ C ⟹ D is rewritten as ⟦A; B; C⟧ ⟹ D

4



2.2 The Isabelle proof assistant

This is done to highlight the fact that all A, B and C are preconditions for D to be true.
However, this is just additional syntax and does not change the meaning of the chained
implication in any way. The traditional syntax is supported equally.

The locale keyword

locale monoid =

fixes G (structure)

assumes m_closed:

"⟦x ∈ carrier G; y ∈ carrier G⟧ ⟹ x ⊗ y ∈ carrier G"

…

locale group = monoid +

assumes Units: "carrier G ⊆ Units G"

lemma (in monoid) inv_one: "inv 𝟭 = 𝟭"

The locale keyword [10] allows to fix the subsequent assumptions and variable names
and to bind this context to the name of the locale [11].

So, for example, every lemma in the context of the locale monoid (denoted by (in monoid)

after the lemma keyword) has the variable G available in its scope and can reason about it
as if it has been fixed locally. Furthermore, all lemmas from monoid are also available in
the locale group, as it is a monoid with the additional assumption that all elements are
invertible. This kind of abstraction allows to work in Isabelle efficiently with constructs
such as algebraic structures: as just seen, a group is just a monoid where all elements are
invertible. As a consequence, all lemmas and theorems about monoids are also true for
groups – and when using locales, Isabelle automatically makes these facts easily accessible
in the current working context.

Pi, extensional, PiE and restrict

These four definitions are put into a single section as they are closely related to each other:

definition Pi :: "'a set ⇒ ('a ⇒ 'b set) ⇒ ('a ⇒ 'b) set"

where "Pi A B = {f. ∀x. x ∈ A ⟶ f x ∈ B x}"

definition extensional :: "'a set ⇒ ('a ⇒ 'b) set"

where "extensional A = {f. ∀x. x ∉ A ⟶ f x = undefined}"

definition "restrict" :: "('a ⇒ 'b) ⇒ 'a set ⇒ 'a ⇒ 'b"

where "restrict f A = (λx. if x ∈ A then f x else undefined)"

definition PiE :: "'a set ⇒ ('a ⇒ 'b set) ⇒ ('a ⇒ 'b) set"

5



2 Preliminaries

where "PiE A B = Pi A B ∩ extensional A"

Listing 2.2: Definitions as in src/HOL/Library/FuncSet.thy

Pi A B simply describes the set or space of all functions that map all elements of A onto
elements of B, while extensional A is used to gather all functions that are undefined5

outside of the domain A. As the name implies, this is important to allow for the principle
of extensionality: two elements (functions) are the same, if and only if they agree on the
function values of all elements. With a domain of interest A, the extensional operator
allows for the following conclusion:

⟦f ∈ extensional A; g ∈ extensional A; ∀x∈A. f x = g x⟧ ⟹ f = g

PiE A B is the intersection between Pi A B and extensional A – so the set of all functions
that are only defined on A and from there map every element to an element of B.

The restrict function reduces the domain of a given function f to no larger than A, so:
restrict f A ∈ extensional A. It also supports an alternative, shorter syntax: restrict

f A ≡ (λa∈A. f a).

The image-operator

The image of a set A under application of a function f is the union of all function values f

x of elements x in A. Although this is a well known, easy to understand and by no means
unconventional definition, I include it in this list because of the special syntax it received
in Isabelle: f ` A is the image of the set A under f.

definition image :: "('a ⇒ 'b) ⇒ 'a set ⇒ 'b set" (infixr "`" 90)

where "f ` A = {y. ∃x∈A. y = f x}"

Listing 2.3: Definition of the image-operator from src/HOL/Set.thy

SOME - Hilbert’s choice operator

HOL uses the axiom of choice and introduces Hilbert’s ε-operator:

axiomatization Eps :: "('a ⇒ bool) ⇒ 'a"

where someI: "P x ⟹ P (Eps P)"

Listing 2.4: Definition from src/HOL/Hilbert_Choice.thy

For a syntactically more intuitive use, the SOME operator has been introduced as an
alternative syntax to the Eps notation: SOME x. P ≡ Eps (λx. P)

Set difference

The difference A \ B between two sets A and B is written as A - B in Isabelle/HOL.
5Functions in HOL have to be total. As a consequence, strictly speaking, the notion of a function

value being undefined is not supported. However, for every type, there exists a dummy object named
undefined that is used to mimic the undefinedness.

6



2.2 The Isabelle proof assistant

List access

In Isabelle, the single elements of a list, can be accessed by the ! operator. The first
element of a list l can be written as follows: l!0. This operation is only well-defined if
the length of the list is greater than or equal to the index that is being accessed.

2.2.3 The HOL-Algebra library

HOL-Algebra is the canonical library for abstract algebra in Isabelle/HOL and as such is
shipped with the standard installation of Isabelle. In it, one can find the definitions of all
classical algebraic structures, such as groups [12].

2.2.4 Groups in HOL-Algebra

Definition of a group

As this thesis revolves around groups in HOL, it is critical to know how they are defined
there. The definition can be found in the source files of HOL-Algebra:

locale monoid =

fixes G (structure)

assumes m_closed:

"⟦x ∈ carrier G; y ∈ carrier G⟧ ⟹ x ⊗ y ∈ carrier G"

and m_assoc:

"⟦x ∈ carrier G; y ∈ carrier G; z ∈ carrier G⟧

⟹ (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and one_closed: "𝟭 ∈ carrier G"

and l_one: "x ∈ carrier G ⟹ 𝟭 ⊗ x = x"

and r_one: "x ∈ carrier G ⟹ x ⊗ 𝟭 = x"

locale group = monoid +

assumes Units: "carrier G ⊆ Units G"

locale comm_monoid = monoid +

assumes m_comm: "⟦x ∈ carrier G; y ∈ carrier G⟧ ⟹ x ⊗ y = y ⊗ x"

locale comm_group = comm_monoid + group

Listing 2.5: Groups as defined in src/HOL/Algebra/Group.thy

As already explained in subsubsection 2.2.2, the locale keyword allows to fix the subsequent
assumptions and variable names and to bind this context to the name of the locale.

Therefore, every lemma in the context of the locale monoid has the structure G available
in its scope. This is also true for the group, as it is defined as being a monoid where all
elements are invertible (the definition of Units was omitted in this excerpt).

7



2 Preliminaries

It is also worth mentioning that, although mostly clear from the context, it is not
possible to identify a group just with its carrier set in a strictly formal environment.
Consequently, in HOL-Algebra, a group is a structure with three attributes:

record 'a partial_object =

carrier :: "'a set"

record 'a monoid = "'a partial_object" +

mult :: "['a, 'a] ⇒ 'a" (infixl "⊗ı" 70)

one :: 'a ("𝟭ı")

Listing 2.6: The structure of a monoid as defined in src/HOL/Algebra/Group.thy and
src/HOL/Algebra/Congruence.thy

A set, where the elements of the groups are from: the carrier; a binary operation, that
combines two elements to a third one, called mult (written as ⊗); and the neutral element
of this operation, the 𝟭.

subgroup and generate

While subgroup H G states the fact that H is a subgroup of group G, generate G A describes
the subgroup generated by the set A in the group G and the statement A ⊆ carrier G

⟹ subgroup (generate G A) G holds. generate is used in several definitions that play a
rather central role in this thesis:

inductive_set generate :: "('a, 'b) monoid_scheme ⇒ 'a set ⇒ 'a set"

for G and H where

one: "𝟭G ∈ generate G H"

| incl: "h ∈ H ⟹ h ∈ generate G H"

| inv: "h ∈ H ⟹ invG h ∈ generate G H"

| eng: "h1 ∈ generate G H ⟹ h2 ∈ generate G H ⟹ h1 ⊗G h2 ∈ generate G H"

Listing 2.7: Definition of generate from /src/HOL/Algebra/Generated_Groups.thy

A subgroup in HOL-Algebra – also the one generated by the generate function – is
not a fully fledged group, but rather just a set with some special properties in the group
enclosing it. To turn this set into a fully fledged group, one could overwrite the carrier of
the whole group, as the multiplication and neutral element stay the same:

G⦇carrier := generate G A⦈

Notably, the notion of a subgroup – a group within another group – also proves useful
when formalising facts about groups. As stated by Gonthier et al. [13], this is especially
beneficial in the case of reasoning about two different groups: it is always possible to
view both these groups as subgroups of a bigger group6 – thus having the same group
operation and saving a syntactical and semantical differentiation between the two group

6This can be the direct product of the two groups.
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2.3 Related work

operations. Even in the case of a single group, this trick can be of use, as I noticed in
the proof of the fundamental theorem of finitely generated abelian groups: both the group
appearing in the induction hypothesis and the group of interest are subgroups of the same
group, removing the need to ”translate” between them.

finprod

The finite product operator is used to form the product over a (finite) family of elements in
a group and can be denoted using the ⨂-notation. For clarification, let A = {a, b, . . . , z}
the index set, G a group and f a function f : A → G. Then:

finprod G f A = ⨂x∈A. f x = f a ⊗ f b ⊗ … ⊗ f z

As a set has no inherit order to it, the above line could also read f b ⊗ f a instead of f
a ⊗ f b. This implies that the definition of finprod only makes sense in the context of a
commutative monoid.

I will not go further into details of the definition of finprod as it contains some necessary,
but for my purposes not important, technicalities7.

2.3 Related work

2.3.1 Group Theory in Isabelle/HOL

The maintainers of Isabelle have introduced the Archive of Formal Proofs and together
with the HOL-Algebra library in the Isabelle distribution much of the work formalised
in Isabelle/HOL is bundled in two central places, including group theory. The work on
group theory in HOL-Algebra consists of quotient groups, a binary direct group product,
Sylow’s Theorem, group actions, the Zassenhaus lemma as well as some work on solvable
and symmetric groups [12].

Concerning the Archive of Formal Proofs, it includes, inter alia, work on the representa-
tion of finite groups [14] and on character groups [15].

The fundamental theorem of finitely generated abelian groups however, has, to my
knowledge, not yet been formalised – neither in Isabelle/HOL nor in any other proof
assistant/theorem prover.

2.3.2 Group Theory in other proof assistants

Of course, the subject of group theory has also been covered in other theorem provers, as
it plays a fundamental role in many fields of mathematics. I present here a small overview
of the status of group theory in the proof assistants Lean, Coq and Mizar.

7These arise from the fact that a set is unordered and one has to somehow ”iterate” over it to form the
product of all elements.

9



2 Preliminaries

Lean

Lean has a central library, where it bundles formalisation projects, the Lean Mathematical
Library [16].

However, it appears to only have rudimentary content on group theory with 4,191 lines
of code covering results such as (among others) group actions, quotient groups, free groups,
symmetric groups and Galois theory. Results include Sylow’s first theorem as well as the
Abel–Ruffini theorem.

Coq

The Coq proof assistant caused a stir when in 2013, after a collaborative effort of six
years, the Feit–Thompson theorem8, that played a central role in the classification of finite
simple groups, had been formalised using Coq[13]. During this effort, many results on
both finite group theory and character groups have been formalised.

Like Isabelle and Lean, Coq also has a central place to find and access libraries: the
Coq package index. There, the only bigger library for algebra and group theory is The
Mathematical Components repository with a large section focusing on finite groups and
formalising, among others, the Jordan–Hölder theorem [17].

Mizar

Mizar, a theorem prover project initiated in 1973, was among the first to seriously establish
the concept of a human-readable but machine-checked proof. This Mizar language inspired,
inter alia, the development of the Isar-language in Isabelle [5]. Formalisations in Mizar are
organised in articles that are bundled in the Mizar Mathematical Library and published in
the associated journal Formalized Mathematics [18]. As of today, the library spans more
than 60,000 theorems, in more than 1,300 articles [19]. The group-theoretic work includes
results and definitions such as quotient groups, the isomorphism theorems, symmetric
groups, the direct product, solvable groups, the Jordan–Hölder theorem, the Sylow
theorems and Cayley’s theorem. Notably, also the fundamental theorem of finite abelian
groups is included, a weaker version of the fundamental theorem of finitely generated
abelian groups [20].

However, in all mentioned theorem provers and their respective libraries, there is no
specific work on finitely generated abelian groups or their decomposition.

8also known as the odd order theorem
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3 Formalisation Decisions

3.1 Group locales

In the course of this thesis, I had to reason about different types of groups. A situation
where the concept of locales is useful. The following listing shows the different group
locales introduced in my work:

locale finite_group = group +

assumes fin: "finite (carrier G)"

locale cyclic_group = group +

fixes gen :: "'a"

assumes gen_closed: "gen ∈ carrier G"

assumes generator: "carrier G = generate G {gen}"

locale finite_comm_group = finite_group + comm_group

locale finite_cyclic_group = finite_group + cyclic_group

locale fin_gen_comm_group = comm_group +

fixes gen :: "'a set"

assumes gens_closed: "gen ⊆ carrier G"

and fin_gen: "finite gen"

and generators: "carrier G = generate G gen"

Clearly, there are connections between these types of groups that are not directly reflected
by inheritance – for example, that all cyclic groups are commutative. These facts have
been proven manually:

sublocale cyclic_group ⊆ comm_group

sublocale finite_comm_group ⊆ fin_gen_comm_group G "carrier G"

3.2 IDirProds and is_idirprod – internal direct product

An important notion in the context of a decomposition of groups, as done by the funda-
mental theorem of finitely generated abelian groups, is the internal direct product.

11



3 Formalisation Decisions

A group is called the internal direct product of a set of subgroups Hs of the group G if
the following three conditions are satisfied [21]:

1. Every subgroup H ∈ Hs is normal (∀g ∈ G. g · H · g−1 = H, trivially true for
commutative groups).

2. All H ∈ Hs together generate G.

3. For every subgroup H ∈ Hs it holds that the intersection of H and the subgroup
generated by Hs \ {H} is trivial – i.e. just the neutral element 111.

In Isabelle/HOL, these can be formalised like the following:

1. ∀H ∈ Hs. H ⊲ G

2. carrier G = generate G (⋃Hs)

For this, I have introduced the following definition:

definition IDirProds :: "('a, 'b) monoid_scheme ⇒ 'a set set ⇒ 'a set"

where

"IDirProds G Hs = generate G (⋃Hs)"

3. ∀H ∈ Hs. complementary H (IDirProds G (Hs - H)) with
complementary H1 H2 ⟷ H1 ∩ H2 = 𝟭.

Thus, the subsequent definition:

definition (in group) complementary_family :: "'a set set ⇒ bool" where

"complementary_family Hs

= (∀H ∈ Hs. complementary H (IDirProds G (Hs - {H})))"

These three formalisations are directly reflected in the following definition to characterise
an internal direct product1:

inductive (in group) is_idirprod :: "'a set ⇒ 'a set set ⇒ bool" where

"(⋀H. H ∈ Hs ⟹ H ⊲ G) ⟹

A = IDirProds G Hs ⟹

complementary_family Hs ⟹

is_idirprod A Hs"

1The only reason that this has been defined using the inductive keyword instead of the standard
definition, is that it introduces a greater amount of predefined simplification rules about the predicate.
Semantically, one could also have used definition.
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3.2 IDirProds and is_idirprod – internal direct product

3.2.1 compl_gens and is_idirgen

In the course of the proof of the fundamental theorem of finitely generated abelian groups,
the need arose to reason not only about a set of subgroups, but about a set of elements
(generators), each generating a subgroup by itself.

With this slightly different setting, I also needed a different predicate expressing
essentially the same as point 3 of the preceding paragraph, but talking about a set of
single elements A. This is because the naïve approach of just checking for is_idirprod

((λg. generate G {g}) ` A) does not capture the intended meaning in its entirety, as it
would also allow for several different elements creating the same subgroup to be in A.

There are several ways to enforce the intended behaviour: The first one is to just
explicitly force the injectivity of (λg. generate G {g}) on A by, for example: inj_on

(generate G) A.
I, however, chose another approach: I added another predicate that expresses the

combined meaning of complementary_family and the aforementioned injectivity:

definition (in group) compl_gens :: "'a set ⇒ bool" where

"compl_gens gs

= (∀g ∈ gs. complementary (generate G {g}) (generate G (gs - {g})))"

Here, generate is used instead of IDirProds as we are acting on a set of elements rather
than a set of sets of elements as when dealing with subgroups in complementary_family.
To justify this definition, I proved that it provided just what I intended:

lemma (in group) compl_gens_imp_complementary_family:

assumes "gs ⊆ carrier G" "compl_gens gs"

shows "complementary_family ((λg. generate G {g}) ` gs)"

lemma (in group) compl_gens_imp_generate_inj:

assumes "gs ⊆ carrier G" "compl_gens gs"

shows "inj_on (λg. generate G {g}) gs"

To make working with this new definition a bit more convenient, I also defined is_idirgen:

inductive (in group) is_idirgen :: "'a set ⇒ 'a set ⇒ bool" where

"(⋀g. g ∈ gs ⟹ (generate G {g}) ⊲ G) ⟹

A = generate G gs ⟹

compl_gens gs ⟹

is_idirgen A gs"

Listing 3.1: Definition of is_idirgen

With the lemmas showed before, it was easy to derive the following:

lemma (in group) idirgen_imp_idirprod:

assumes "is_idirgen A gs" "gs ⊆ carrier G"

shows "is_idirprod A ((λg. generate G {g}) ` gs)"

13



3 Formalisation Decisions

This lemma validates the definition of is_idirgen, as it implies is_idirprod for the
subgroups generated by all the single elements – which is just what will be needed.

3.3 DirProds – (external) direct product

The most central notion when reasoning about decomposing groups is the (external) direct
product of groups.

The direct product of groups Gi with i ∈ N is defined [21] as:

G0 × G1 × G2 . . . = {(g0, g1, g2 . . .) | gi ∈ Gi}

with the operation between two elements defined component-wise:

(g0, g1, g2 . . .) · (h0, h1, h2 . . .) = (g0 · h0, g1 · h1, g2 · h2 . . .)

One way to formalise this would be to use list as elements of the direct product group,
where the components of the element directly correspond to the single components of the
list. This would be fine as long as we just want to represent a finite product.

For an infinite number of factors however, this formalisation choice would not be able
to represent the product, as lists are finite in Isabelle. To also allow for infinite products,
the elements of the product group were chosen to be functions that for each index in a
(possibly) infinite index set return a component of the element. This decision of using
index sets instead of lists brings the benefit of not introducing the illusory image of an
order in the product and so, things like its ”commutativity” are trivialities, that, in the
case of a list, would have to be proven.

So, the definition of the direct product in Isabelle/HOL is the following2:

definition DirProds

:: "('a ⇒ ('b, 'c) monoid_scheme) ⇒ 'a set ⇒ ('a ⇒ 'b) monoid"

where

"DirProds G I = ⦇ carrier = PiE I (carrier ∘ G),

mult = (λx y. restrict (λi. x i ⊗G i y i) I),

one = restrict (λi. 𝟭G i) I ⦈"

carrier = PiE I (carrier ∘ G) encodes that each element of the direct product should
have its components in the carrier of the corresponding group for every index in the
index set I while the element (which is a function) should be undefined for all indices
that are not in I to allow for extensionality, i.e. two elements are equal iff they agree on

2Note that the elements of the direct product are not restricted to a finite number of non-trivial
components, so that this is indeed the direct product (product in category theory) – not the direct
sum (coproduct in category theory). As these two notions coincide for finitely many factors and as
terminology is not too consistent with this concept, they are often used interchangeably depending on
the context. However, as this thesis mainly focuses on finitely generated groups, where only a finite
number of factors occurs in a direct product, this does not matter too much in the context of my work.
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3.4 Miscellaneous Definitions

all components. This is represented by the predicate extensional I which is used in the
definition of PiE3.

The multiplication is defined component-wise with the additional requirement that the
combination of two elements has to be undefined outside of the index set I because of
extensionality, which is encoded by restrict f I for a function f.

It is quite obvious that the neutral element of the direct product is the function return-
ing the neutral element of each of the groups corresponding to the indices in the index set I.

The reason to be interested in the direct product at all is that it itself forms a group,
which can easily be shown:

lemma DirProds_group_iff: "group (DirProds G I) ⟷ (∀i∈I. group (G i))"

lemma DirProds_comm_group_iff:

"comm_group (DirProds G I) ⟷ (∀i∈I. comm_group (G i))"

As the names direct product and internal direct product suggest, the two notions are
related: if a group is the internal product of a finite set of subgroups, then it is isomorphic
to the direct product of these subgroups. In Isabelle:

lemma (in comm_group) cong_DirProds_IDirProds:

assumes "is_idirprod (carrier G) Hs" "finite Hs"

shows "DirProds (λH. G⦇carrier := H⦈) Hs ≅ G"

Listing 3.2: Isomorphism of Direct Product and Internal Direct Product

3.4 Miscellaneous Definitions

3.4.1 relations of elements

The proof of the fundamental theorem of finitely generated abelian groups requires the
notion of a relation between elements. While not particularly difficult, it is worth an
explanation and a proper introduction.

Informally, a relation of a set of elements is a way to express the neutral element using
powers of these elements.

In my formalisation efforts, I defined the set of all relations for the subgroup generated
by A as follows4:

definition (in comm_group) relations :: "'a set ⇒ ('a ⇒ int) set" where

"relations A = {f. finprod G (λa. a [^] f a) A = 𝟭} ∩ extensional A"

[^] is the exponentiation operator within the group – i.e. exponentiation using the
multiplication function of the group. A relation is then a function that assigns to each
element ai of the set A an integer exponent ei, so that the term ∏n

i=1 aei
i equals 111.

3cf. subsubsection 2.2.2 Pi, extensional, PiE and restrict
4The reason why this is only defined for commutative groups is explained in subsubsection 2.2.4 finprod.
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3 Formalisation Decisions

Note that in the proof of the fundamental theorem of finitely generated abelian groups,
this notion is also used, but with a subtle difference: Here, the elements are considered
a set – and in the just mentioned proof, the elements are taken as a list. This very
small difference does matter in the formal proof and will be explained in section 4.4
Formalisation Decisions and Difficulties.

3.4.2 get_exp – resembling the discrete logarithm

The get_exp function is defined as follows: get_exp g a returns an exponent e so that
ge = a. This is obviously only possible if there exists such an exponent. Even then, the
choice is in most cases not unique. As a consequence, the choice operator has been used
to formalise this function:

definition (in group) get_exp where

"get_exp g = (λa. SOME k::int. a = g [^] k)"

This definition, although not mentioned a lot throughout this thesis, has proved useful at
several occasions throughout my formalisation work.
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4 Fundamental theorem of finitely
generated abelian groups

A main focus of this thesis is the fundamental theorem of finitely generated abelian groups
– a theorem well known in today’s form since the beginning of the 20th century and with
proofs for weaker versions and special cases going back to the early 19th century [22]. The
theorem can be formulated in two equivalent versions.

4.1 Invariant factor decomposition

Any finitely generated abelian group G can be decomposed into a direct product of cyclic
groups whose orders divide each other successively:

G ∼= Zo1 × . . . × Zok with ∀i ∈ {1, . . . k − 1}. oi | oi+1

Note: The order of Z is by convention 0, so Z0 = Z. Moreover, as every natural
number divides 0, but the only number to divide 0 is 0 itself, the Z components are the
last factors of the product. This convention is not arbitrary – it is also used in HOL-Algebra.

This decomposition is uniquely determined by G and the oi 6= 0 are called the in-
variant factors of G, giving this version of the theorem its name. This decomposition is
the coarsest one of the group (least number of cyclic factors).

4.2 Primary decomposition

The primary decomposition provides the finest decomposition of a finitely generated
abelian group G into cyclic groups. G is decomposed into a product of primary cyclic
groups – that is, cyclic groups whose order is a prime power or infinite:

G ∼= Zq1 × . . . × Zqk where the qi are prime powers or 0.

Note: The primes do not need to be distinct.

This decomposition is unique up to permutation of the factors.
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4 Fundamental theorem of finitely generated abelian groups

4.3 Proof

4.3.1 Invariant factor decomposition

The proof I chose to formalise is the one Kemper provides for the invariant factor
decomposition in the lecture notes to his undergraduate algebra lecture [23].
What now follows is a slightly modified version of his proof from these notes:

Let G be a finitely generated abelian group, generated by n elements. Then:

G ∼= Zd1 × . . . × Zdk with k ≤ n and ∀i ∈ {1, . . . , k − 1}. di | di+1

Proof: We have G = 〈σ1, . . . , σn〉 and perform a proof by complete induction on n. We
introduce the notion of a relation between elements: a relation between n elements σi is a
product of the following form:

n

∏
i=1

σei
i = 111, ei ∈ Z

Note that this is always the case when all ei = 0 (trivial relation).
Firstly, we consider the case that there is no relation between the σi besides the trivial

one – so that from ∏n
i=1 σei

i = 111, ei ∈ Z it follows that all ei = 0. In this case, the order
of all σi is infinite (because if not, σ

ord(σi)
i = 111 would be a relation) and as there is also no

relation ”connecting”1 the generators, we have2:

G ∼= 〈σ1〉 × . . . × 〈σn〉 ∼= Z × . . . × Z proving the theorem for this case.

The remaining case is that there are relations between the σi, i.e. there exist ei such that
∏n

i=1 σei
i = 111 where not all exponents ei = 0. We choose a relation of n elements αi that

– among all relations of n elements generating the whole group – involves the minimal
positive exponent occurring in all of these relations:

n

∏
i=1

αei
i = 111, ei ∈ Z

Without loss of generality, let α1 have this smallest exponent e1. This minimality is a key
fact that will be used in several occasions and I will refer to it as (M).

We can obtain this minimum because there exist relations with positive exponents: any
relation with an exponent ei < 0 belonging to the element σi can be turned into a relation
with a positive exponent by replacing σei

i with (σ−1
i )−ei .

The first step is then to show that all ei are multiples of e1: using integer division, we
obtain r, q ∈ Z, 0 ≤ r < e1, so that ei = e1 · q + r. With τ1 := α1α

q
i , it holds that:

G = 〈τ1, α2, . . . , αn〉 and αr
i · τe1

1 · ∏
1≤j≤n

j 6=i

α
ej
j = 111

1More details in section 4.4 Formalisation Decisions and Difficulties
2Here, we use the well-known fact that cyclic groups of the same order are isomorphic.
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4.3 Proof

The first equation holds, since τ1 is formed using α1 and αi by definition and α1 can be
expressed using τ1 and αi: α1 = τ1α

−q
i .

For the second part, note that:

αr
i · τe1

1 · ∏
1≤j≤n

j 6=i

α
ej
j = αr

i · α
e1q
i · αe1

1 · ∏
1≤j≤n

j 6=i

α
ej
j =

n

∏
j=1

α
ej
j = 111

These elements thus form a relation of n elements, and r 6= 0 would be a contradiction to
(M) (as r ≤ e1). It follows that ∀i ∈ {1, . . . , n}. e1 | ei.

Next, let τ := ∏n
i=1 αei/e1

i so that

G = 〈τ, α2 . . . , αn〉 and τe1 = 111

From this, it follows that ord(τ) | e1. But, because 111 = τord(τ) = τord(τ) · ∏n
i=2 α0

i is also a
relation with n elements, we have, together with (M), that ord(τ) = e1.

In the case that e1 = 1, it follows that τ = 111 and the theorem follows by the induction
hypothesis, as the group is then generated by a2, . . . , an.

In the remaining case where e1 > 1, it holds that 〈τ〉 ∩ 〈α2, . . . , αn〉 = {111} as every
element of the intersection can be written both as τa with 0 ≤ a < ord(τ) = e1 and as
∏n

i=2 αai
i . This leads to τa · ∏n

i=2 α−ai
i = 111; a contradiction to (M) for a > 0. Thus, a = 0,

and 111 is the only element in the intersection, making G by definition the internal direct
product of 〈τ〉 and 〈α2, . . . , αn〉. And as stated in Listing 3.2, this implies:

G ∼= 〈τ〉 × 〈α2, . . . , αn〉 ∼= Zd1 × 〈α2, . . . , αn〉

From the induction hypothesis we get:

〈α2, . . . , αn〉 ∼= Zd2 × . . . × Zdk with k ≤ n and ∀i ∈ {2, . . . , k − 1}. di | di+1

It thus remains to show that d1 | d2. In the case that k < n, there are less than n generators
and we are done by induction. So, we can assume k = n. To every Zdi there exists a
generator τi generating it (such that τ = τ1). We have the relation τd1

1 · τd2
2 · ∏n

i=3 τ0
i = 111

of n elements. Using the argument of the integer division like before, we can obtain a
contradiction to (M) if d1 - d2, thus showing the theorem. �

The theorem above shows the existence of such a decomposition, but it does not show the
uniqueness of it. I let this part open for future work.

4.3.2 Primary decomposition

The primary decomposition can directly be obtained from the invariant factor decomposi-
tion using the fact that for each n > 0, it holds that:

Zn ∼= Zpa1
1
× . . . × Zpam

m
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4 Fundamental theorem of finitely generated abelian groups

where the pi are the prime factors of n and the ai their respective multiplicities. This is
true because the pai

i are all coprime to each other (cf. Chinese remainder theorem). �

Here, the uniqueness could be obtained in a similar fashion from the uniqueness of
the invariant factor decomposition, but as this is missing, the uniqueness of the primary
decomposition also remains unproven and open for future work.

4.4 Formalisation Decisions and Difficulties

As the attentive reader may have noticed, the proof of the invariant factor decomposition
includes a part which is not formulated in a strictly formal way: the fact that there is
no ”connection” between the generating elements σi in case that there is only the trivial
relation between them and the subsequent conclusion, that they thus form:

G ∼= 〈σ1〉 × . . . × 〈σn〉 ∼= Z × . . . × Z

In order to prove this, I first had to show the equivalence of a different way to express the
fact that subgroups form an internal direct product:

lemma (in comm_group) triv_finprod_iff_comp_fam_PiE:

assumes "finite Hs" "⋀H. H ∈ Hs ⟹ subgroup H G"

shows "(∀f ∈ PiE Hs id. finprod G f Hs = 𝟭 ⟶ (∀H∈Hs. f H = 𝟭))

⟷ complementary_family Hs"

This states that a finite complementary family of subgroups is exactly characterised by
the fact that, if we pick one element xi from each subgroup Hi and take the product of all
these, this can only be 111 iff all the xi are 111.

However, not only the subgroups but also their generators are of interest in the previous
proofs, requiring a slightly stronger version of the lemma:

lemma (in comm_group) triv_finprod_iff_comp_gens:

assumes "finite gs" "gs ⊆ carrier G"

shows

"(∀f ∈ PiE gs (λa. generate G {a}). finprod G f gs = 𝟭 ⟶ (∀a∈gs. f a = 𝟭))

⟷ compl_gens gs"

With this, it was not difficult to show the following:

lemma (in comm_group) comp_fam_iff_relations_triv:

assumes "finite gs" "gs ⊆ carrier G" "∀g∈gs. ord g = 0"

shows "relations gs = {(λ_∈gs. 0::int)} ⟷ compl_gens gs"

which is just what was proposed in the slightly informal part of the proof.
Apart from that, as I already hinted on in subsection 3.4.1 relations of elements, there

is a difference between the definition of a relation as used in the previous proof and as
formalised in Isabelle. The former considers a list of elements of length n and the latter
a set of elements of cardinality n. Thinking of the elements as a set rather than a list,
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4.5 The final formalised theorems

brings a disadvantage: the key fact used was the minimality (M) of an exponent of a
relation of n elements. Every time that I constructed a different relation to contradict
(M), I had to prove that it consists of n elements. In the case of a list, this does not pose
a problem as I only ever substituted an element with a different one, thus not changing
the length of the list. But in the case of a set, this is not that simple: the new element
substituting another could coincide with an element already in the set, thus reducing its
cardinality to n − 1.

A countermeasure to this problem is to introduce another change to the proof: instead
of considering relations of exactly n elements, I worked with relations of at most n elements.
However, when proving that there are indeed relations with a positive exponent – by
replacing an element with a negative exponent trough its inverse – this change does not
prevent having to consider in an extra case that the inverse of the element could already
be among the generators.

All of this did not prevent me from proving the theorem with this definition of relations,
but in retrospect, I would change the definition of a relation so that it is formulated in
terms of a list, to allow for a slightly cleaner proof.

Another technique used in the formalised proof is to not prove the theorem directly
for a finitely generated abelian group, but for a finitely generated subgroup of an abelian
group. As mentioned in subsubsection 2.2.4, this allows for a cleaner induction, as both
the group of interest and the group appearing in the induction hypothesis are subgroups
of the same group, sharing the group multiplication and neutral element.

4.5 The final formalised theorems

Following the path outlined in subsection 4.3.1 Invariant factor decomposition, I ended
up with the slightly stronger following result:

theorem (in fin_gen_comm_group) invariant_factor_decomposition_idirgen:

obtains gs where

"set gs ⊆ carrier G" "distinct gs" "is_idirgen (carrier G) (set gs)"

"successively (dvd) (map ord gs)" "card (set gs) ≤ card gen" "𝟭 ∉ set gs"

Here, it is also stated that the obtained decomposition (encoded in a list of generators gs)
consists of no more elements than required to generate the group. Moreover, it is excluded
that the trivial factor Z1 occurs in the product3.

With this decomposition, I was able to formalise the fundamental theorem of finitely
generated abelian groups in its original way:

corollary (in fin_gen_comm_group) invariant_factor_decomposition_Zn:

obtains ns where

"DirProds (λn. Z (ns!n)) {..<length ns} ≅ G"

"successively (dvd) ns" "length ns ≤ card gen"

3The decomposition of Z1 itself would be the empty product.
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4 Fundamental theorem of finitely generated abelian groups

corollary (in fin_gen_comm_group) primal_decomposition_Zn:

obtains ns where

"DirProds (λn. Z (ns!n)) {..<length ns} ≅ G"

"∀n∈set ns. n = 0 ∨ (∃p k. prime p ∧ k > 0 ∧ n = p ^ k)"

In both cases, ns is a list containing the orders of the cyclic integer groups that take
part in the product. Note that Z x is an abbreviation for integer_mod_group x, which in
mathematical notation is Zx.
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5 Character groups

The term of a character group is a notion that occurs in the contexts of algebra and
analytical number theory and has a huge amount of applications, for example when
proving Dirichlet’s Theorem on primes in arithmetic progressions [15]. There are (at least)
two different, but related definitions of the term character : the multiplicative character
and the character of a representation. In this work however, I exclusively refer to the
multiplicative character.

I extend and simplify a part of an already existing entry in the Archive of Formal
Proofs that includes some theory about characters by Eberl [15], by making use of the
fundamental theorem of finitely generated abelian groups that I have formalised before.

5.1 Character groups

A (multiplicative) character χ on a finite abelian group G is defined as a group homomor-
phism χ : G → C∗ (i.e. C \ {0} with the multiplication as a group operation) [24]. This
set of homomorphisms forms an abelian group Ĝ (the character group or G’s dual group)
with the multiplication of two characters χ1, χ2 (extensionally) defined as:

(χ1 · χ2)(a) := χ1(a) · χ2(a) for a ∈ G.

Being a group homomorphism, a character must project the neutral element of G onto
the neutral element of the multiplication in C: the number 1. With the just mentioned
multiplicative property of characters, it follows for an element a ∈ G:

1 = χ(111) = χ(an) = χ(a)n

Note: n := |G| here and in the rest of this chapter.

This implies two things:
1. The neutral element – called the principal character – of the character group Ĝ is just
the function that projects every element of the group onto the number 1.
2. Each character is a function that maps the elements of the group G onto one of the
n-th roots of unity. The image of a character function thus resides on the unit circle.

5.2 Initial State

The entry in the AFP, that I targeted on restructuring and extending, revolves around
Dirichlet’s Theorem on primes in arithmetic progressions [15] and makes use of the theory
of character groups. In the entry, there are several thematically structured theories.
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5 Character groups

My work focuses on the theory Multiplicative_Characters. By restructuring its
proofs, it renders superfluous the also included theory Adjoin_Groups – a rather ad-hoc
appearing theory with the sole purpose of enabling some of the proofs about characters. In
this theory file, the author considers a subgroup H of a group G and – without using the
standard definition of generate – constructs a new subgroup of G by adding (adjoining)
another group element to it and closing it under multiplication and the forming of an
inverse.

In Multiplicative_Characters the notion of characters and character groups for finite
abelian groups are introduced. Moreover, it is shown that the character groups themselves
form finite abelian groups.

The two orthogonality theorems of characters, the natural isomorphism between a group
and its double dual, and some useful facts – such as being able to extend a character on
a subgroup to a character on the whole group – also found their way into this file, all
making use of the theory Adjoin_Groups.

locale character = finite_comm_group +

fixes χ :: "'a ⇒ complex"

assumes char_one_nz: "χ 𝟭 ≠ 0"

assumes char_eq_0: "a ∉ carrier G ⟹ χ a = 0"

assumes char_mult [simp]:

"⟦a ∈ carrier G; b ∈ carrier G⟧ ⟹ χ (a ⊗ b) = χ a ∗ χ b"

definition principal_char :: "('a, 'b) monoid_scheme ⇒ 'a ⇒ complex" where

"principal_char G a = (if a ∈ carrier G then 1 else 0)"

definition characters :: "('a, 'b) monoid_scheme ⇒ ('a ⇒ complex) set" where

"characters G = {χ. character G χ}"

definition Characters :: "('a, 'b) monoid_scheme ⇒ ('a ⇒ complex) monoid"

where "Characters G = ⦇ carrier = characters G,

mult = (λχ1 χ2 k. χ1 k ∗ χ2 k),

one = principal_char G ⦈"

Listing 5.1: Definitions from the file Multiplicative_Characters.

5.3 Contributions

5.3.1 Character group isomorphism

After having done some proofs about abelian and cyclic groups throughout the course of
this thesis, I began my work on this section with the special case of cyclic groups following
the notes of Evertse and Sofos [24]. This case was a great starting point, since cyclic
groups are a very basic structure being completely determined a single generating element.
This simplicity and the multiplicative characteristics of a character allow to completely
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5.3 Contributions

determine a character χ on a group G generated by an element gen by just the value of
χ(gen). This inspired me to define (only locally for the following lemmas) the function
induce_char1 that takes a value χ(gen) and constructs a character on the cyclic group G.
I proved that this function actually is a bijection between the nth roots of unity and all
the characters on G, implying the results in the following listing:

lemma (in finite_cyclic_group)

defines ic: "induce_char ≡

(λc::complex. (λa. if a∈carrier G then c powi get_exp gen a else 0))"

shows order_Characters: "order (Characters G) = order G"

and gen_fixes_char: "⟦character G a; character G b; a gen = b gen⟧ ⟹ a = b"

and unity_root_induce_char: "z ^ order G = 1 ⟹ character G (induce_char z)"

Listing 5.2: Results on character groups of cyclic groups

It was also possible to show that a single one of these characters generates the whole
character group if it maps a generating element of G onto a ”true” nth root of unity y (i.e.
n is the smallest positive exponent so that yn = 1). This allows to interpret the character
group of a finite cyclic group also as a finite cyclic group:

lemma (in finite_cyclic_group) finite_cyclic_group_Characters:

obtains χ where "finite_cyclic_group (Characters G) χ"

And as cyclic groups of the same order are isomorphic, it follows directly:

lemma (in finite_cyclic_group) Characters_iso:

"G ≅ Characters G"

With this isomorphism of the ”building blocks” of finite abelian groups, I had taken the
first step in order to prove the isomorphism between a group and its character group.
Next, I had to consider characters on a direct product of groups. Here, it was necessary
to analyse the connection between a single character on a factor of the group product and
the character on the entire product. Evertse and Sofos [24] just define a character χ on
a direct product G in terms of the single characters χi of the ”factor” groups Gi in the
product:

χ(g) = χ(g1, . . . , gn) :=
n

∏
i=1

χi(gi)

While this definition is correct, one cannot just simply define the character on the direct
product in Isabelle/HOL. Instead, it has to be proven that this really is the way characters
behave on a direct product, i.e. one has to show that every character on a direct product
induces character functions on its components and that its value indeed is the product
of these component character functions applied to each component. This results in the
following rather complex formulations:

lemma DirProds_subchar:

assumes "finite_comm_group (DirProds Gs I)"

1for the definition of get_exp see subsection 3.4.2 get_exp – resembling the discrete logarithm
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5 Character groups

and x: "x ∈ carrier (Characters (DirProds Gs I))"

and i: "i ∈ I" and I: "finite I"

defines g: "g ≡ (λc. (λi∈I. (λa. c ((λi∈I. 𝟭Gs i)(i:=a)))))"

shows "character (Gs i) (g x i)"

lemma Characters_DirProds_single_prod:

assumes "finite_comm_group (DirProds Gs I)"

and x: "x ∈ carrier (Characters (DirProds Gs I))"

and I: "finite I"

defines g: "g ≡ (λI. (λc. (λi∈I. (λa. c ((λi∈I. 𝟭Gs i)(i:=a))))))"

shows "(λe. if e∈carrier(DirProds Gs I) then ∏i∈I. (g I x i) (e i) else 0) = x"

With these two lemmas I can show the isomorphism of a character group of a direct
product to the direct product of character groups:

lemma (in finite_comm_group) Characters_DirProds_iso:

assumes "DirProds Gs I ≅ G" "group (DirProds Gs I)" "finite I"

shows "DirProds (Characters ∘ Gs) I ≅ Characters G"

Using this lemma, the isomorphism of a finite cyclic group to its character group, and
the fundamental theorem of finitely generated abelian groups, it is possible to derive the
following for a finite abelian group G:

G ∼= Zd1 × . . . × Zdn
∼= Ẑd1 × . . . × Ẑdn

∼= Ĝ

In Isabelle, this is captured in the following lemma:

lemma (in finite_comm_group) Characters_iso:

shows "G ≅ Characters G"

It is worth noting that, in contrast to the natural isomorphism between a group and its
double dual2, the isomorphism to its dual is not that obvious. Even proving the existence
of such an isomorphism required the use of the fundamental theorem of finitely generated
abelian groups.

5.3.2 Several properties of characters

This subsection will cover – not in great detail – the efforts made to get rid of the theory
Adjoin_Groups, as it appears rather ad-hoc and just not very elegant. Several properties
of characters and character groups will be reproved using more standard group-theoretic
arguments.

The main difficulty in this part was to reprove that the number of ways in which a
character on a subgroup H can be extended to a character on the whole group G, is |G|

|H| .
This expression has obvious similarity with Lagrange’s (group-theoretic) theorem and this
was the starting point for the proof. The following definition plays a central role:

2For x ∈ G, define x̂ : Ĝ → ̂̂G, x̂(χ) := χ(x). Then f : G → ̂̂G, f (x) = x̂ is the natural isomorphism from
G to its double dual.
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5.3 Contributions

definition restrict_char::"'a set ⇒ ('a ⇒ complex) ⇒ ('a ⇒ complex) " where

"restrict_char H χ = (λe. if e∈H then χ e else 0)"

restrict_char H χ restricts a given character χ to the specified subgroup H. When applied
to characters of the whole group G, this operation actually is a group homomorphism
from Ĝ to Ĥ. Its image is all of Ĥ and its kernel is the set of characters that project all
elements of H onto 1:

lemma (in finite_comm_group) restrict_char_hom:

assumes "subgroup H G"

shows "group_hom (Characters G) (Characters (G⦇carrier := H⦈)) (restrict_char H)"

lemma (in finite_comm_group) restrict_char_kernel:

assumes "subgroup H G"

shows "kernel (Characters G) (Characters (G⦇carrier := H⦈)) (restrict_char H)

= {χ∈characters G. ∀x∈H. χ x = 1}"

lemma (in finite_comm_group) restrict_char_image:

assumes "subgroup H G"

shows "restrict_char H ` (carrier (Characters G))

= carrier (Characters (G⦇carrier := H⦈))"

As every character on H is the image of some character on G under restriction, it can
be extended to a character on G. With the following lemma, it is further possible to
reduce the question of the number of extensions of any character on H to the number of
extensions of the principal character on H:

lemma (in finite_comm_group) character_restrict_card:

assumes "subgroup H G" "character G a" "character G b"

shows "card {χ'∈characters G. ∀x∈H. χ' x = a x}

= card {χ'∈characters G. ∀x∈H. χ' x = b x}"

In order to obtain the number of extensions of the principal character on H to G, the
following observation is crucial: the kernel of the restrict_char homomorphism from Ĝ
to Ĥ (all characters that project all elements of H onto 1) is isomorphic to the character
group of the quotient group Ĝ/H: By identifying an element x of G with its coset xH,
every character on G/H (acting on cosets) is turned into a character on G that maps all
elements of H onto 1. This mapping between Ĝ/H and this restricted set of characters
on G is an isomorphism:

lemma (in finite_comm_group) iso_Characters_FactGroup:

assumes H: "subgroup H G"

shows "(λχ x. if x ∈ carrier G then χ (H #> x) else 0) ∈

iso (Characters (G Mod H))

((Characters G)⦇carrier := {χ∈characters G. ∀x∈H. χ x = 1}⦈)"
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5 Character groups

lemma (in finite_comm_group) is_iso_Characters_FactGroup:

assumes H: "subgroup H G"

shows "Characters (G Mod H)

≅ (Characters G)⦇carrier := {χ∈characters G. ∀x∈H. χ x = 1}⦈"

Putting all of this together, one obtains for a character χ on H3:

|{χ′ ∈ Ĝ. ∀x ∈ H. χ′(x) = χ(x)}| = |{χ′ ∈ Ĝ. ∀x ∈ H. χ′(x) = 1}| = |Ĝ/H| = |G/H|

Together with Lagrange’s theorem, it is then evident that:

theorem (in finite_comm_group) card_character_extensions:

assumes "subgroup H G" "character (G⦇carrier := H⦈) χ"

shows "card {χ'∈characters G. ∀x∈H. χ' x = χ x} ∗ card H = order G"

Having reproved this, it follows immediately that one can extend a character χ on H to a
character on G (by choosing one of the |G|

|H| characters on G with the same values on H as
χ)4:

corollary (in finite_comm_group) character_extension_exists:

assumes "subgroup H G" "character (G⦇carrier := H⦈) χ"

obtains χ' where "character G χ'" and "⋀x. x ∈ H ⟹ χ' x = χ x"

And lastly, it was possible to show that for every element x ∈ G, x 6= 111 there exists a
character on G projecting this element on a ord(x)-th root of unity:

corollary (in finite_comm_group) character_with_value_exists:

assumes "x ∈ carrier G" and "x ≠ 𝟭" and "z ^ ord x = 1"

obtains χ where "character G χ" and "χ x = z"

This can easily be seen when considering a character on the cyclic group generated by x
together with the results of Listing 5.2 and then extending this character to the whole
group G.

3One may come to the conclusion that the restrict_char homomorphism may not be needed at all as it
does not show up in the chain of equations. However, this is not the case as its surjectivity is the key
fact that allows the application of character_restrict_card. To see this, note that the preconditions
of this lemma mention characters on the whole group G rather than on just H. And such a character
on G can be obtained from the pre-image of restrict_char.

4It is also possible to derive this directly from the fact that restrict_char is a surjective homomorphism
from G to H.
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6 Conclusion

In this thesis, I successfully formalised the fundamental theorem of finitely generated
abelian groups and subsequently used it to prove and reprove some of the results on
character groups, producing around 5000 lines of formalisation code.

6.1 Lessons learned

Although I think of this thesis as a success, in retrospect, there is a lot of room for
improvement: some of my early proofs are very verbose and could surely be rewritten in a
more elegant and shorter way – also the proof of the invariant factor decomposition by
using lists to express relations instead of sets.

Another important – and to some, rather obvious – lesson is to double check newly
introduced definitions for correctness before starting to formalise facts about them. I
started this formalisation work out with an incorrect generalisation of the binary internal
direct product, which cost me some time.

Finally, when working in a proof assistant and strictly formalising each step, one might
get caught up in this lengthy process and only think about the next small formalisation
step. However, in order to work efficiently, it is crucial not to lose sight of the bigger
context.

6.2 Future Work

As shown in chapter 5, the formalisation of the fundamental theorem of finitely generated
abelian groups opens up new areas for formalisation – in group theory and other fields, such
as analytic number theory. However, as already mentioned at the end of subsection 4.3.1
Invariant factor decomposition, in this work I was not able to prove the uniqueness
of the invariant factor decomposition (and as a consequence also not of the primary
decomposition). Proving this would finalise the formalisation work on the fundamental
theorem of finitely generated abelian groups. But since all sources I found about the proof
of the uniqueness of these decompositions make use of torsion subgroups and the invariant
basis number property for Z-modules, I suspect that one would have to formalise some
theory on these subjects first. For now, it remains a task open for future work.

Another point is that, in the course of formalising the fundamental theorem of finitely
generated abelian groups and the results on character groups, I also formalised a lot of lem-
mas, some of which – in my opinion – could make their way into the standard HOL-Algebra
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6 Conclusion

library. In such a case, another look at the lemmas – in order to meet standards for a li-
brary – might reveal more elegant proofs. Also, some documentation will have to be added.

And lastly, a more global view also reveals that there is still a lot to do in order
to formalise entire group theory in Isabelle, let alone all known mathematics – a truly
demanding but in parts necessary task in order to allow for new mathematical developments
actually taking place in a theorem prover like Isabelle.
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