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Abstract

English

The interval Newton method is an extension of the well-known Newton’s method for
finding roots of differentiable functions. While the latter approximates at most one
root of a function, the interval Newton method finds all roots in a given interval. In
this thesis, the method is formalised for arbitrary-precision floating point numbers
analogous to Moore [2] using the proof assistant Isabelle/HOL. With different examples
the results of the implementation are analysed and evaluated. Using the Approximation
package, the implementation is easily usable to approximate the roots of a large class
of univariate real-valued functions.

Deutsch

Das Newton-Intervallverfahren ist eine Erweiterung des bekannten Newtonschen
Näherungsverfahren, um Nullstellen ableitbarer Funktionen zu bestimmen. Während
letzteres maximal eine Wurzel approximiert, bestimmt das Newton-Intervallverfahren
alle Nullstellen in einem angegebenen Intervall. In dieser Arbeit wird die Methode ana-
log zu Moore [2] mit dem interaktiven Theorembeweiser Isabelle/HOL für Gleitkom-
mazahlen formalisiert. Mit verschiedenen Beispielen werden die Ergebnisse der Im-
plementierung analysiert und bewertet. Durch die Einbindung des „Approximation
package“ ist die Implementierung einfach nutzbar, um Nullstellen von vielen ver-
schiedenen reellen univariaten Funktionen zu approximieren.
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1 Introduction

When analysing and talking about functions, it is almost impossible to skip the calcula-
tion of roots. Because this is such a central problem, there are many different methods
for calculating numbers x0 meeting this condition for a function f :

f (x0) = 0

During my time in school, we talked about two main methods for finding the roots of a
function. The first was the quadratic formula, which we called “Mitternachtsformel”
(midnight formula), the second and more general one was Newton’s method.

This method had quite some flaws, as we get at most one root of the function, and even
this is not guaranteed and we do not know before applying the method. Both these
issues are solved by the interval Newton method, an extension of the original Newton’s
method: If the method does not find any root in a given interval, the function has no
root in this interval. However, if the function has roots, the method results in a list of
intervals, the union of which contains all roots.

In this thesis, the interval Newton method is implemented for arbitrary-precision
floating point numbers and later proven with the proof assistant Isabelle/HOL.

Outline

In Chapter 2 we show the mathematical background of the method.

Following this, Chapter 3 contains the main part of this thesis, the formalisation of the
method: To begin with, we look at the different parts of the implementation and then
go through the formal correctness proof the same way.

After that, in Chapter 4, we analyse the results of the implementation using different
examples.
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2 Mathematical Background

Before going into details of the implementation, it is important to clarify the mathemat-
ics behind it. This chapter is based on chapter 8.1 of “Introduction to Interval Analysis”
by Moore et al. [2].

Let f be a function f : X→ R which is differentiable on X =
[
X, X

]
with the derivative

f ′. A variation of the mean value theorem shows that if f ′ is the derivative of f on an
interval X, there exists an s ∈ X so that:

f (X)− f (X) = f ′(s) ·
(
X− X

)
(2.1)

Of course the theorem also shows for x, y ∈ X, that:

∃s ∈ [x, y] : f (y)− f (x) = f ′(s) · (y− x) (2.2)

Now let x be a root of f , so that f (x) = 0. Following (2.2) there is an s so that:

f (y)− f (x) = f (y) = f ′(s) · (y− x) =⇒ f (y) + f ′(s) · (x− y) = 0 (2.3)

In order to isolate x we assume ∃y ∈ X : f (y) 6= 0. If a y like this does not exist this
means f is constant on X and ∀s ∈ X : f ′(s) = 0. That constant is either 0 or not; in
both cases, the resulting interval is known: In the first case there is an infinite number
of roots in X and therefore the result is the same as the starting interval, as we cannot
narrow it down any more. And if f is a constant function 6= 0 there are no roots.

Therefore we can safely assume that the image of f is not {0}. Following (2.3) we get
for all y ∈ X with f (y) 6= f (x) = 0:

f (y)
f ′(s)

+ (x− y) = 0 =⇒ x = y− f (y)
f ′(s)

(2.4)

This is similar to the well-known formula of Newton’s method:

xn+1 := xn −
f (xn)

f ′(xn)
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2 Mathematical Background

This can be interpreted in a graphical way: The mean value theorem states, that there
is a point s, so that the tangent at s has the same slope as the secant connecting the
function values of the interval bounds: f ′(s). In our case, one of these bounds is a root
and its function value is 0. Now we can recreate the secant by transforming the tangent
and therefore find the root.

However, we do not know the exact value of s and more importantly f ′(s). But we
know, that s ∈ X, therefore we replace f ′(s) with an enclosure F′ of f ′ on X where
F′ ⊇ [min{ f ′(χ) : χ ∈ X}, max{ f ′(χ) : χ ∈ X}]. Now the method takes all possible
slopes into consideration for further calculation. As f ′(s) ∈ F′ it follows that:

x ∈ y− f (y)
F′

(2.5)

The problem in (2.5) is the division with an interval, which could contain 0. Still
assuming F′ 6= [0, 0] we have to distinguish between four cases:

1
F′

= F′−1 =



[
F′
−1

, F′−1
]

if 0 /∈ F′(
−∞, F′−1

]
if F′ < 0 = F′[

F′
−1

, ∞
)

if F′ = 0 < F′(
−∞, F′−1

]
∪
[

F′
−1

, ∞
)

if F′ < 0 < F′

(2.6)

The second, third and forth case follow extended interval arithmetic. As already shown
it is not an issue to exclude the case F′ = [0, 0], as for every root x there is always a
y ∈ X where f (y) 6= 0 if F′ 6= [0, 0] and therefore f ′(s) 6= 0.

Since, in general, we will not be able to perform all computations exactly, the next step
is to replace f (y) by a bounding enclosure F(y). As f (y) ∈ F(y) per definition, the
equation (2.5) can easily be rewritten:

x ∈ y− F(y)
F′

(2.7)

In order to transform this into an algorithm, the selection of y has to follow a rule.
Suitable for this is amongst others the midpoint of X:

m(X) =
X + X

2
=: m (2.8)
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2 Mathematical Background

However, this can lead to a possible problem: What if F(m) =: F is zero, so F = [0, 0]?
This was not allowed before and it still would produce the following formula:

x ∈ m− F
F′

= m− [0, 0]
F′

= [m, m]

This is wrong for functions with more than one root. If 0 /∈ F′ there is no issue, as f
has at most one root, which would be found in one step. However, if the function has
more roots, all except one are lost.

An example would be the function g : R→ R, x 7→ (x− 1)(x− 2) = x2 − 3x + 2 with
g′(x) = 2x− 3, Y = [0, 4] and the roots x1 = 1 and x2 = 2. The result after one step is
[2, 2], which obviously does not contain 1.

Therefore allowing the calculation with F = [0, 0] can lead to a wrong result. But what
if 0 ∈ F, if F 6= [0, 0]? There are, similar to (2.6), three cases: Using g and Y from
above all calculations with G .

= [−1, 0], G .
= [0, 1] and G .

= [−1, 1] are resulting in
Y∩ (−∞, ∞) = Y.

In theory, all those results are correct, as they contain every root. But it is neither
helpful nor is an algorithm needed to know that all roots of a function are in (−∞, ∞).
Therefore in the implementation, this case has to be treated differently and we do so
by bisecting the interval. Speaking of the implementation, it is time to complete the
method.

We have shown, that every root of f in the starting interval X is also in m− F/F′. To
narrow down the interval, it is intersected with the starting interval. This is particularly
helpful if the enclosure F′ contains 0 and m− F/F′ is an unbounded interval.

Using the previous steps we can sum our current state as follows:

x ∈ X∧ f (x) = 0∧ F′ 6= [0, 0] ∧ (F 6= [0, 0] ∨ 0 /∈ F′) =⇒ x ∈ X∩
(

m− F
F′

)
(2.9)

The next and almost final step is the definition of one Newton step, the recursive
formula of the interval Newton method with starting interval X0. First we look at the
cases, if 0 is not in F′ or either the lower or upper bound of F′, so we do not have to
split the interval:

Xk+1 = Xk ∩
(

m(Xk)−
F(m(Xk))

F′(Xk)

)
(2.10)

4



2 Mathematical Background

However, if we have to split the interval, we get two results:

Xk+1 = Xk ∩

m(Xk)−
F(m(Xk))[
F′(Xk), 0

]
 and Xk+1 = Xk ∩

m(Xk)−
F(m(Xk))[
0, F′(Xk)

]


The method will be applied to both these intervals, therefore creating a recursion tree.
The final step is to show the convergence of the method because implementing a
non-converging algorithm is not the goal of this thesis.

One trivial case is as previously mentioned with F(m(Xi)) = [0, 0] and 0 /∈ F′(Xi), as
the algorithm terminates after one step:

Xk+1 = Xk ∩
{

m(Xk) +
F(m(Xk))

F′(Xk)

}
= Xk ∩ [m(Xk), m(Xk)] = [m(Xk), m(Xk)]

Looking at the non-trivial case, we assume that 0 /∈ F(m(Xk)) and F′(m(Xk)) 6= [0, 0].
Also, we assume, that we do not split the interval and therefore have one result. Then
Xk+1 does not contain m(Xk). It follows, that w(Xk+1) < 2 ·w(Xk) with w(X) = X−X
being the width of an interval. This shows, that in each step the width of the interval
is more than halved and recursive Newton steps result in a nested sequence of intervals.

If F′ < 0 < F′ we have to split the interval following (2). Analogous to the proof
without splitting we know, that Xk+1 < 2 ·w(Xk) and Xk+1 < 2 ·w(Xk). It follows, that
w(Xk+1) + w(Xk+1) < w(Xk). Therefore we have shown that even in the split case we
have a converging method.
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3 Formalisation of the Interval Newton
Method

3.1 Dependencies

Isabelle/HOL

Isabelle/HOL is a logic in the generic proof assistant Isabelle, where HOL stands for
“higher-order logic”. There are other built-in logics, however, in this thesis, we only use
HOL, which is also the most used one.

Proof assistants are primarily used to help verify implemented code. To make life
easier for the user, there are already many proven theorems, which serve as a basis
for upcoming proofs. These are organised in different theories, together with helpful
lemmas, definitions and functions.

In this thesis, we verify that our implementation of the interval Newton method does
not oversee any root. To achieve this, we use different already available theories, the
most important ones I will briefly introduce.

Interval Arithmetic

As its name already suggests, the interval Newton method heavily relies on interval
arithmetic and intervals in general. One option is the Interval theory, which supports
many operations on intervals, despite some flaws. The biggest one is the missing
support for empty, open, and unbounded intervals. As we can emulate both empty
and open intervals we use this datatype.

Floating-Point Numbers

Floating-point numbers (in the future referred to as floats) in Isabelle/HOL are numbers
in the infinite set {m · 2e : m, e ∈ Z}. This also mirrors the constructor, which takes
two natural numbers as mantissa and exponent. In contrary to standards like “IEEE
754”, neither the mantissa nor the exponent is bounded by a maximum number of bits.

6



3 Formalisation of the Interval Newton Method

However, in practice, one usually limits the number of bits used in a computation to a
given precision for performance reasons.

Interval Float and Approximation Bounds

Both the Interval_Float theory and the Approximation_Bounds theory based on it
extend the Interval theory with many helpful operations and lemmas on float intervals.
Important for this thesis are primarily the operations with an additional precision
argument which guarantee that both endpoints of the resulting interval have at most
the desired precision.

Approximation

The Approximation package is probably the single most important dependency of the
implementation, as it makes the implementation way easier to use. It provides not only
the “floatarith” datatype but many helpful functions supporting it.

This type is used to model functions recursively and supports many different operations:

datatype floatarith
= Add floatarith floatarith | Minus floatarith [...]
| Var nat | Num float

The constructor “Var” uses the index of a list to represent a variable. In our case, we
only use univariate functions and therefore the index of the variable is always 0.

The result of a function is calculated using interpret_floatarith. This function takes
the floatarith and a list containing the values of the variable:

fun interpret_floatarith :: "floatarith ⇒ real list ⇒ real" where
"interpret_floatarith (Add a b) vs = (interpret_floatarith a vs)
+ (interpret_floatarith b vs)" |

"interpret_floatarith (Minus a) vs = - (interpret_floatarith a vs)" |
[...]
"interpret_floatarith (Num f) vs = f"
"interpret_floatarith (Var n) vs = vs ! n"

However, we do not want to evaluate the result of a function for a given input but
instead for all values of an interval. This can be achieved with the approx function,
which approximates the enclosure of a function for a given interval. With this, we do
not have to manually calculate bounding intervals for the method, which makes it more
usable, as hinted before.

7



3 Formalisation of the Interval Newton Method

3.2 Implementation

One small note before we begin: The complete code needed for the implementation of
the interval Newton method is available via zenodo [3].

Before going into details it is important to clarify the goals of the implementation. The
idea is to find and approximate all roots of a function in a given float interval. In
addition, two natural numbers, an epsilon, and a precision argument are needed. The
epsilon works as a termination condition regarding the width of the intervals while the
precision is necessary for all operations on floats. The function is given as a floatarith
based on the Approximation package.

This implementation of the interval Newton method consists of three main parts:

newton_step_float calculates the result of a Newton step using a precision argument,
the current interval, its midpoint and the given enclosures F and F′.

newton_step_floatarith is based on newton_step_float and calculates the enclos-
ures using the function in floatarith form, a precision argument, and the interval.
If the floatarith is not supported, the function aborts.

newton_floatarith is the recursive function based on newton_step_floatarith. In
addition to floatarith, precision and interval also an epsilon value is needed as
condition for termination.

Design Choices

The main design choice behind the method was selecting the most suitable type to
return the resulting intervals in the different parts. After each Newton step, there
are three different scenarios: The result is either an empty interval, one interval, or
two intervals. As the interval type doesn’t support empty intervals, there has to be
a different solution. This can either be achieved with a “sum type” wrapped in an
“option” or with a list of float intervals.

In my opinion, a list is in this case more suitable, especially, because it avoids unwieldy
case distinctions. In addition, the three cases can be represented conveniently by an
empty list or a list containing one or two intervals.

Because several of the operations can fail, the two parts using floatariths are written
in the option monad and the final result is a “float interval list option” to reflect this

8



3 Formalisation of the Interval Newton Method

possibility of failure. Also, it is possible that the recursive method does not terminate.
In this case the result would also be “None”.

3.2.1 Newton Step – Mathematics

In theory, one Newton step could be handled in a single function definition, but it is
easier to split the mathematical part working with enclosures from the part, which uses
floatariths to calculate both F and F′.

The Newton step on floats is the backbone of the implementation and as previously
mentioned is responsible for (almost) all calculations according to (2.10). It takes a
natural number as precision argument prec for all operations on floats, the three
float intervals X, F and F’ and a point m in X. At the moment the exact definition
of m is irrelevant, as long as it lies in X. This is guaranteed from the calculation in
newton_step_floatarith and therefore not checked here, as newton_step_float is
not meant to be used on its own. Now let us look at the Newton step on floats in a
mathematical form:

N(X, F, F′, m) =



F′ = [0, 0] →
{

0 ∈ F → X

else → ∅

0 /∈ F′ → X ∩
(

m− F
F′

)

F′ = 0 →


F < 0 → X ∩

(
∞, m− F/F′

]
0 < F → X ∩ [m− F/F′, ∞)

F < 0 < F → [X, m] ;
[
m, X

]

F′ = 0 →


F < 0 → X ∩

[
m− F/F′, ∞

)
0 < F → X ∩

(
∞, m− F/F′

]
F < 0 < F → [X, m] ;

[
m, X

]

F′ < 0 < F′ →


F < 0 → X ∩

(
∞, m− F/F′

]
; X ∩

[
m− F/F′, ∞

)
0 < F → X ∩

(
∞, m− F/F′

]
; X ∩ [m− F/F′, ∞)

F < 0 < F → [X, m] ;
[
m, X

]

9



3 Formalisation of the Interval Newton Method

After seeing the mathematical idea, hopefully, the full code becomes more readable:

definition newton_step_float:: "nat ⇒ float interval ⇒ float interval ⇒
float interval ⇒ float ⇒ float interval list" where

"newton_step_float prec X F F’ m = (
if lower F’ = 0 ∧ upper F’ = 0 then (

if 0 ∈ set_of F then [X] else []
) else if 0 < lower F’ ∧ upper F’ < 0 then (
float_interval_intersection X (
plus_float_interval prec (interval_of m) (
- mult_float_interval prec F (inverse_float_interval’ prec F’)

)
)

) else if upper F’ = 0 then (
if upper F < 0 then (
float_interval_intersection_unbounded_lower X (
float_plus_up prec m (- float_divl prec (upper F) (lower F’))

)
) else if 0 < lower F then (
float_interval_intersection_unbounded_upper X (
float_plus_down prec m (- float_divr prec (lower F) (lower F’))

)
) else split_float_interval X m

) else if lower F’ = 0 then (
if upper F < 0 then (
float_interval_intersection_unbounded_upper X (
float_plus_down prec m (- float_divr prec (upper F) (upper F’))

)
) else if 0 < lower F then (
float_interval_intersection_unbounded_lower X (
float_plus_up prec m (- float_divl prec (lower F) (upper F’))

)
) else split_float_interval X m

) else (
if upper F < 0 then (
float_interval_intersection_unbounded_lower X (
float_plus_up prec m (- float_divl prec (upper F) (lower F’))

) @ float_interval_intersection_unbounded_upper X (
float_plus_down prec m (- float_divr prec (upper F) (upper F’))

10



3 Formalisation of the Interval Newton Method

)
) else if 0 < lower F then (
float_interval_intersection_unbounded_lower X (
float_plus_up prec m (- float_divl prec (lower F) (upper F’))

) @ float_interval_intersection_unbounded_upper X (
float_plus_down prec m (- float_divr prec (lower F) (lower F’))

)
) else split_interval X m

)
)"

In the code there occur some new functions, mostly for interval intersections with a list
as result:

float_interval_intersection
ivl ivl’

Returns a list containing the intersection of two in-
tervals; if the intervals are disjoint, an empty list is
returned.

float_interval_intersection
_unbounded_lower ivl upper

Like above, but this takes an interval and the upper
bound of a half-open interval.

float_interval_intersection
_unbounded_upper ivl lower

Like above, but this takes an interval and the lower
bound of a half-open interval.

inverse_float_interval’
prec ivl

This calculates the inverse of an interval, assuming
0 /∈ivl.

split_float_interval ivl m This splits an interval at a point and returns a list
with the two intervals (or one if the point is not in
the interval)

Table 3.1: Definitions on Intervals

One more word regarding inverse_float_interval’: This function is almost the same
as inverse_float_interval of the Interval_Float theory, but has one big difference.
If we use this function inside of the Newton step, we know, that the interval F’ in
question does not contain 0. As this is not guaranteed in the original function the result
is wrapped in an “option”, in order to return “None” if the interval contains zero. To
avoid this unnecessary case distinction I defined inverse_float_interval’, which is
of course not intended to be used on it is own.

11



3 Formalisation of the Interval Newton Method

3.2.2 Newton Step – Processing

The second part of the Newton step mainly calculates F and F’ using the function f.
But let us have a look at the code first:

definition newton_step_floatarith:: "floatarith ⇒ nat ⇒ float interval
⇒ float interval list option" where

"newton_step_floatarith f prec ivl = do {
let m = float_down prec (mid ivl);
let f’ = DERIV_floatarith 0 f;
F ← approx prec f [Some (interval_of m)];
F’ ← approx prec f’ [Some ivl];
if m ≤ lower ivl then Some [round_interval prec ivl]
else if isDERIV_approx prec 0 f [Some ivl] then
Some (map (round_interval prec) (newton_step_float prec ivl F F’ m))

else None
}"

The first step is the calculation of the midpoint m of the interval. In the first version
of this function, the corresponding line was just “let m = mid ivl”. The issue here is
the definition of the midpoint: mid i = (lower i + upper i) * Float 1 (-1)". With
this definition, it is possible that the precision of m is different from prec, which led to
unwanted results. Therefore the midpoint is rounded down to the desired precision of
the calculation. This also could lead to a numerical issue if the rounded down midpoint
is less than or equal to the lower bound of the interval, which is checked four lines
later.

In the next line, the derivative f’ of f is calculated using the Approximation package.

Following this, both the enclosures F of f over [m,m] and F’ of f’ over ivl are ap-
proximated. If either of the returned float interval options by approx equals “None”,
newton_step_floatarith also results into “None”.

The first if-statement checks, if the midpoint is a valid input. If m is less than the lower
bound the method is invalid or at least unproven. If the midpoint is the same as the
lower bound, this can create serious issues. For example, this occurred for the function
x2, when the midpoint of

[
0, 1.449× 10−9] was the lower bound and therefore 0. This

led to the split [0, 0] ;
[
0, 1.449× 10−9] and a non-terminating method. In addition to

that, if m equals the lower bound, the width of the interval is very small. This also
means that the approximation is accurate enough to justify terminating.

12



3 Formalisation of the Interval Newton Method

The else-if-statement checks if f is differentiable and thus the validity of f’. If it is
valid, the preparation is done and the intervals are used by newton_step_float. In
the last step, the resulting intervals get rounded to ensure that they have exactly the
desired precision. And if the derivative is not valid, of course “None” is returned.

Despite it following from the implementation it is important to state that the result
“None” does not mean that there is no root in the interval, but rather that there was an
issue during runtime, most likely because the function was not supported. If there are
no roots, the desired result would be “Some []”.

3.2.3 Recursive Newton Method

Although the single Newton step is the most important part of the implementation, it
is obviously not enough. In order to have a working algorithm we need a recursive
wrapper function:

partial_function (option) newton_floatarith:: "nat ⇒ floatarith ⇒ nat ⇒
float interval ⇒ float interval list option" where

"newton_floatarith eps f prec ivl = (
if width ivl < Float 1 (-eps) then Some [ivl] else do {
ivls ← newton_step_floatarith f prec ivl;
if ivls = [ivl] then Some [ivl]
else do {
ivls’ ← mapM (newton_floatarith eps f prec) ivls;
Some (concat ivls’)

}
}

)"

The first thing to notice is the signature of the recursive function: In contrast to both
Newton steps, this is a partial function with “option” as mode argument instead of
a definition. While we have already shown convergence without rounding in the
mathematical background, we cannot prove termination for all inputs. In a partial
function this is not needed, as non-termination is modelled with “None”. [4, p. 263].

In the first step the epsilon value is used to check if the width of the interval is smaller
than 2−ε. The ε is used as the first condition of termination and represents the desired
minimum accuracy of the approximation. Of course, it is possible that there are two
roots in an interval, if either the epsilon-value is set too low (and therefore the accepted
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3 Formalisation of the Interval Newton Method

width is too wide) or the function simply has two (or even more) roots extremely
close to each other. If the width is small enough, the interval is accurate enough and
returned, otherwise we proceed to the main body of the function.

If the interval is not exact enough, the result of newton_step_floatarith is calculated
in the first step. As before, if it is “None”, this will also be the result of the whole
recursive function. But in theory, it is extremely unlikely if not even impossible, that
newton_step_floatarith returns “None” in a later recursion, if there is no issue in the
starting interval. This is the case as the possible result “None” mostly depends on the
function f, which does not change.

Following this, it is checked whether the Newton step modified the interval at all.
If this was not the case, there is no further refinement possible and therefore this is
also the final result. Mathematically speaking this is also the only valid termination
requirement, however, in practice this can easily result in an infinite loop.

If the output is not the same as the input, the recursive part follows. The new defined
function mapM is a modified mapping function:

fun mapM:: "(’a ⇒ ’b option) ⇒ ’a list ⇒ ’b list option" where
"mapM f [] = Some []" |
"mapM f (x#xs) = do {
y ← f x;
ys ← mapM f xs;
Some (y # ys)

}"

With mapM newton_floatarith is recursively called on the new intervals resulting from
the Newton step. If the function returns “None” on either element of the list, mapM
is also “None”. In our case however, as mentioned before, newton_step_floatarith
returning “None” for only one interval and therefore discarding information from
others is negligible.

The final step after the recursive call is the concatenation of all lists of float intervals,
thus creating the final output, a list of intervals.

3.3 Proof

Besides the implementation, correctness is also an important part of this thesis. While
the proofs of the three functions differ, the corresponding lemmas are all relatively
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3 Formalisation of the Interval Newton Method

similar. We assume, that x is a root, so that f (x) = 0, and also that x is in the starting
interval. With these assumptions, we show that x is in the resulting list. It is important
to note that, even though the computation takes place entirely on floats, x is a real
number!

3.3.1 Newton Step – Mathematics

Similarly to the implementation section, both parts of the Newton step are treated
separately. Also, because this part unsurprisingly relies heavily on the mathematical
background of the method, there will be many references to the corresponding chapter.
Also, most of the lemmas are shown without proof, as those are not too interesting.

The single most important lemma is the mean value theorem (2.1), as it is the mathem-
atical foundation of the method. This lemma is a modified version of mvt_very_simple
from the Derivative theory:

lemma mvt_very_simple’:
fixes f :: "real ⇒ real"
assumes "l ≤ u"

and "
∧
x. Jl ≤ x; x ≤ uK =⇒

(f has_field_derivative f’ x) (at x within {l..u})"
shows "∃s ∈ {l..u}. f u - f l = f’ s * (u - l)"

The following lemmas are all wrapped in a locale and proven with real-number values.
“A locale is a functor that maps parameters (including implicit type parameters) and
a specification to a list of declarations.” [4, S. 101] In our case, this means that the
following fixes and assumptions are valid for all of the following lemmas until we
explicitly change the locale. For now we are working on real numbers and real
intervals, as both floats and float intervals can easily be converted to real numbers and
real intervals:

locale newton_step_locale =
fixes f f’ :: "real ⇒ real"
fixes X F’ :: "real interval"
fixes m :: real
assumes f’: "x ∈ set_of X =⇒
(f has_field_derivative f’ x)(at x within set_of X)"

assumes f’_enclosure: "x ∈ set_of X =⇒ f’ x ∈ set_of F’"
assumes m: "m ∈ set_of X"

We have the function f with the derivative f ′ on the interval X in which we search for
roots. Also we have the enclosure F′ of f ′ on X and a point m in X. It is important to
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3 Formalisation of the Interval Newton Method

note, that right now we do not know that m is the midpoint. Later, to use the following
lemmas, we interpret the fixed parameters and prove the assumptions.

The assumptions of the locale along with some not too interesting steps are used for
the following lemma, which is a slightly transformed version of (2.2):

lemma f_transformed:
assumes "x ∈ set_of X" "y ∈ set_of X" "x < y"
shows "∃s ∈ {x..y}. f x = f y + f’ s * (x - y)"

The next step is both setting x to a root of f and the division with the derivative, where
the latter is only possible, if f (x) 6= f (y) (2.4):

lemma f_transformed_with_unequal_values:
assumes "x ∈ set_of X" "f x = 0" "y ∈ set_of X" "x < y" "f x 6= f y"
shows "∃s ∈ {x..y}. x = y - f y / f’ s"

There is also an analogous lemma f_transformed_with_unequal_values’, where the
fourth assumption is flipped to "y < x" and therefore the set is {y..x}, everything else
(including the proof) is the same. With this transformation the next step is replacing
f’ s with the enclosure of the derivative and extending the calculation onto intervals:

lemma enclosure_not_zero:
assumes "x ∈ set_of X" "f x = 0" "0 /∈ set_of F’"
shows "x ∈ set_of (interval_of m - interval_of (f m)
* inverse_interval’ F’)"

The important part here is the third assumption, "0 /∈ set_of F’", as this calculation
would not be valid otherwise. The reason is the division by F′, which leads to the
multiplication by the inverse of F′. Looking at the extended interval arithmetic (2.6), we
have to prove something similar for all three cases, where 0 ∈ F′ 6= [0, 0]. Because those
are half-open intervals, these lemmas do not show that the root is in the interval rather
lower than the upper bound or higher than the lower bound. However, because the
sign of f (m) is unclear, we have two lemmas for every case, one with the assumption
f m < 0 and one with 0 < f m. Following the design of the function to be proven a
version with f (m) = 0 is not needed.

For all following lemmas the first two assumptions are the same with "x ∈ set_of X"
and "f x = 0", the latter two differ. Because of that, all six lemmas proving the bounds
and their differences can easily be shown in a table:
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lower F’ < 0 ∧
upper F’ = 0

lower F’ < 0 ∧
0 < upper F’

lower F’ = 0 ∧
0 < upper F’

f m < 0 x ≤ m - f m /
lower F’

←− ∨ −→ x ≥ m - f m /
upper F’

0 < f m x ≥ m - f m /
lower F’

←− ∨ −→ x ≤ m - f m /
upper F’

Table 3.2: Bounds, if the Enclosure contains 0

The final step for the auxiliary lemmas is replacing f (m) with an enclosure F, analogous
to (2.7). Therefore we first have to extend our locale:

locale newton_step_locale’ = newton_step_locale +
fixes F :: "real interval"
assumes f_enclosure: "f m ∈ set_of F"

Using both the f_enclosure assumption and the enclosure_not_zero lemma we have
proven earlier we get for 0 /∈ F′:

lemma f’enclosure_not_zero:
assumes "x ∈ set_of X" "f x = 0" "0 /∈ set_of F’"
shows "x ∈ set_of (interval_of m - F * inverse_interval’ F’)"

Of course we also need an updated table for the half open intervals. Important here is
the difference when the upper or the lower bound of F is needed, as this makes quite a
difference:

lower F’ < 0 ∧
upper F’ = 0

lower F’ < 0 ∧
0 < upper F’

lower F’ = 0 ∧
0 < upper F’

upper F < 0 x ≤ m - upper F
/ lower F’

←− ∨ −→ x ≥ m - upper F
/ upper F’

0 < lower F x ≥ m - lower F
/ lower F’

←− ∨ −→ x ≤ m - lower F
/ upper F’

Table 3.3: Refined Bounds, if the Enclosure contains 0

As before, if 0 ∈ F, we go into a different case and therefore do not have to show
anything at this point.

Before we can start the proof of newton_step_float, we need a new locale using floats.
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locale newton_step_locale_float =
fixes f f’ :: "real ⇒ real"
fixes X F F’ :: "float interval"
fixes m :: "float"
assumes f’: "x ∈ set_of (real_interval X) =⇒
(f has_field_derivative f’ x)(at x within set_of (real_interval X))"

assumes f’_enclosure: "x ∈ set_of (real_interval X) =⇒
f’ x ∈ set_of (real_interval F’)"

assumes m: "m ∈ set_of X"
assumes f_enclosure: "f m ∈ set_of (real_interval F)"

As mentioned before, the floats and float intervals of this locale can easily be interpreted
as newton_step_locale’:

interpretation newton_step_locale’ f f’ "real_interval X"
"real_interval F’" "real_of_float m" "real_interval F"

With this we can use all the above lemmas and are finally able to show the correctness
of the mathematical backbone newton_step_float:

lemma newton_step_float_correctness:
fixes x :: real
assumes "x ∈ set_of (real_interval X)" "f x = 0"
shows "x ∈ real_set_of_float_interval_list (
newton_step_float prec X F F’ m)"

One small note: The function real_set_of_float_interval_list is the union over
all float intervals of a list, but every interval is converted with real_interval, thus
creating a set of real numbers.

As the lemma is the most important one, I’ll go into more details of the proof. There
are five different cases to consider:

• "lower F’ = 0" "upper F’ = 0"

• "0 < lower F’ ∨ upper F’ < 0"

• "lower F’ < 0" "upper F’ = 0"

• "lower F’ = 0" "upper F’ > 0"

• "lower F’ < 0" "0 < upper F’"

18
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Enclosure is Zero

The first case is primarily another case distinction if 0 ∈ F. If this holds, the result is
the input interval and contains every root.

If this is false it is easy in theory, however in practice a little bit more complicated. The
first step is proving the following lemma:

lemma deriv_is_zero:
fixes f :: "real ⇒ real"
assumes "l ≤ u"

and "
∧
x. Jl ≤ x; x ≤ uK =⇒

(f has_field_derivative (λx. 0) x) (at x within {l..u})"
shows "∀x ∈ {l..u}. ∀x’ ∈ {l..u}. f x = f x’"

With deriv_is_zero we know that f (x) = f (m). In the next step, we have f (m) 6= 0,
as f (m) ∈ F, but 0 /∈ F. This however leads to a contradiction with the assumption,
that f (x) = 0.

Zero is not in the Enclosure

Despite this being the easiest part to show when proving the algorithm for real numbers,
it was probably the most complicated on floats. For every operation, we needed to show,
that this operation is monotonic. This included among other things the difference,

lemma diff_mono_real_interval:
assumes "a ≤ real_interval a’" "b ≤ real_interval b’"
shows "a - b ≤ real_interval (a’ - b’)"

the multiplication,

lemma mult_float_interval_mono:
assumes "a ≤ real_interval a’" "b ≤ real_interval b’"
shows "a * b ≤ real_interval (mult_float_interval prec a’ b’)"

and the division, respectively the inversion.

lemma inverse_float_interval’_mono:
assumes "a ≤ real_interval a’" "0 /∈ set_of a’"
shows "inverse_interval’ a ≤ real_interval (inverse_float_interval’

prec a’)"

With mainly those three lemmas we can show, that:
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3 Formalisation of the Interval Newton Method

"set_of (interval_of m - real_interval F * inverse_interval’ (
real_interval F’)) ⊆ set_of (real_interval (interval_of m -
mult_float_interval prec F (inverse_float_interval’ prec F’)))

With this, f’enclosure_not_zero and an auxiliary lemma on interval intersections we
can show that the root is still in this interval.

Enclosure contains Zero

The two cases if either the lower or the upper bound of the enclosure is zero are
almost identical and the case if zero is inbetween those two bounds is only a mixture
and therefore similar as well. Because of that we only look at the proof for the case
"lower F’ < 0" "upper F’ = 0":

Before starting the proof, we have to distinguish between three more cases, as we do in
the function we have to prove:

• "0 < lower F"

• "upper F < 0"

• "0" ∈ set_of F

Let us look at the first case: Following the table of bounds we’ve shown earlier we
know, that x ≤ m− F/F′ (3.3). With this we can show, that:

"x ≤ float_plus_up prec m (- float_divl prec (upper F) (lower F’))"

To prove the current goal, we only need one more lemma on the half open interval
intersection:

lemma in_both_float_intervals_in_ul_intersection’:
assumes "x ∈ set_of (real_interval ivl)" "x ≤ u"
shows "x ∈ real_set_of_float_interval_list (

float_interval_intersection_unbounded_lower ivl u)"

Using this and the definition of newton_step_float we can show, that the root x is still
in the interval.

While the second case can be shown analogously, the third case is proven differently.
As we only split the interval into two intervals, it is trivial to show that no element is
lost.
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3.3.2 Newton Step – Processing

After showing, that roots are retained in the mathematical part, we of course have to
show the same for newton_step_floatarith. Therefore we have to prove the following
lemma:

lemma newton_step_floatarith_correctness:
fixes x :: real
assumes "newton_step_floatarith f prec ivl = Some ivls"
"interpret_floatarith f [x] = 0" "x ∈ set_of (real_interval ivl)"

shows "x ∈ real_set_of_float_interval_list ivls"

Following the implementation there are two case distinctions to be made, if m ≤ lower
ivl or not. If yes the resulting interval list equals [ivl], so the root is obviously still
included.

If not we use the first assumption and the monad syntax to compute the derivative,
obtain the intervals and show that the derivative is correct:

• "f’ = DERIV_floatarith 0 f"

• "approx prec f’ [Some ivl] = Some F’"

• "approx prec f [Some (interval_of m)] = Some F"

• "isDERIV_approx prec 0 f [Some ivl]"

This case is proven easily using the interpretation as newton_step_locale_float, so
that we can use the already proven lemma newton_step_float_correctness. However,
the interpretation is not as trivial as it seems at first glance.

The first problem is defining the functions f f’ :: "real ⇒ real" from the two
floatarith expressions. This can be achieved with the following two lambda-functions:

"λx. interpret_floatarith f [x]" !
= fi, "λx. interpret_floatarith f’ [x]" !

= f ′i .

In order to prove this interpretation, we have to show four goals:

• f ′i being the derivative of fi on ivl

• the correctness of F’, the enclosure of f ′i

• the correctness of F, the enclosure of fi
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• m being in the interval ivl

Most of those goals can be shown using lemmas of the Approximation package. Now
we can use, as previously indicated, newton_step_float_correctness and have:

"x ∈ real_set_of_float_interval_list (newton_step_float prec ivl F F’ m)"

The last step is to show, that the root is also in the rounded list of intervals, which
we get after mapping. With one auxiliary lemma based on “in_round_intervalI” we
show that we do not lose any elements after rounding. That this holds is no big surprise,
as the lower bound is truncated down and the upper bound truncated up.

3.3.3 Recursive Newton Method

Now what is left to show is the correctness of the recursive newton_floatarith function.
We do so with the following lemma:

lemma newton_floatarith_correctness:
fixes x :: real
assumes "newton_floatarith eps f prec ivl = Some ivls"
"interpret_floatarith f [x] = 0" "x ∈ set_of (real_interval ivl)"

shows "x ∈ real_set_of_float_interval_list ivls"

As the function is recursive, it is almost natural to prove it with induction. We start with
a case distinction, whether the function terminates or not. If this is the case, ivls equals
[ivl], and "x ∈ real_set_of_float_interval_list ivls" directly follows from the
induction hypothesis.

The more difficult part is certainly the recursive case:

(rec) ivls’ ivlss’ where
"newton_step_floatarith f prec ivl = Some ivls’" "ivls = concat ivlss’"
"mapM (newton_floatarith eps f prec) ivls’ = Some ivlss’"

Using both the premises and the previously shown correctness lemma of the Newton
step we can show, that ivls’ contains the fixed root. Because of that there exists an i
so that "x ∈ set_of (real_interval (ivls’ ! i))" and "i < length ivls’".

In the next step we show that the result of the recursive function with the i-th interval is
“Some float interval”: "newton_floatarith eps f prec (ivls’ ! i)= Some xivls".
With the premises and the hypothesis we can show, that the root is contained in xivls.
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In the next step we rewrite ivlss’ and show, that xivls ∈ set ivlss’. Obviously
xivls is in the concatenation of ivlss’, and because the root is in xivls, it is also in
the concatenation and therefore in the result of the Newton function.

An important thing to note: While we have shown, that we do not lose any roots
applying this method, we cannot guarantee that there are no false positives. What I
mean by that is the possibility of intervals in the result list that do not contain a root.
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After all the theory it is finally time to test the implementation of the interval Newton
method and evaluate the results. If not stated otherwise, the default parameters are
30 for both epsilon and the precision argument. Testing showed setting both of these
parameters to the same value delivers the best results. Also, the interval, in which we
search for roots, is [−10, 10] by default.

However, not only the quality of the results will be examined, but also the needed
amount of iterations to get those results. The amount of iterations is counted as the
height of the recursion tree: the longest sequence of nested intervals leading into a
result interval.

There are some intervals with a pretty small width so that both endpoints are the
same after rounding, for example, [−2.0000000019,−1.9999999991]. These intervals are
marked as [−2.00 - −2.00], this is for sure not an optimal solution, however the best I
came up with while retaining readability in tables.

Before heading into the examples we look at a concrete evaluation for f (x) = x, the
identity function with the single root 0:

definition f where "f = floatarith.Var 0"
definition I where "I = Interval’’(-10,10)"
value "newton_floatarith 30 f 30 I"
= "Some [Interval (Float 0 (- 1), Float 0 0)]"

The result
[
0 · 2−1, 0 · 20] equals [0, 0], our desired result. As a small reminder, if we set

I to for example [−10,−5], the result is "Some []" instead of "None".

4.1 Basic Cases

First, we look at some basic functions to see, if the method is working as intended and
to get some first results and check their accuracy.
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We start with approximating simple roots of polynomials. Of course, there are more
convenient methods to determine the roots of these functions, especially in the following
examples: As all functions are factorised, it is trivial to identify the roots.

Function Result Iterations

f1(x) = 0 [−10, 10] 1

f2(x) = 1 ∅ 1

f3(x) = x [0, 0] 2

f4(x) = x− 1 [1, 1] 2

f5(x) = (x− 1)(x + 2) [−2,−2] ; [1, 1] 10

f6(x) = (x− 1)(x + 2)(x− 3) [−2.000 - −2.000] ; [1, 1] ; [3, 3] 10

f6′(x) = x3 − 2x2 − 5x + 6 [−2.000 - −2.000] ; [1, 1] ; [3.000 - 3.000] 10

f6o(x) = xxx− 2xx− 5x + 6 [−2,−2] ; [1, 1] , [3, 3] 11

Table 4.1: Polynomial Cases

Except for the different variations f6 all results are not only correct but as accurate as
possible. The first root of f6 and both the first and third roots of f6′ are approximated
accurately, but not optimally, which would be the exact intervals [−2,−2] and [3, 3].
The first interval, approximating the root −2, is equal for both functions:[

−2− 2−29,−2 + 2−30] ≈ [−2.0000000019,−1.9999999991]

The approximation of the root 3 of f6′ has a pretty similar accuracy:[
3− 3 ∗ 2−29, 3 + 2−28] ≈ [2.9999999944, 3.0000000037]

What is remarkable on the other hand is the result of f6o , an optimised version of f6.
This is a really important observation: Rewriting a function can lead to a different and
hopefully better result. Now we know for sure that the method can give us the best
possible result for f6 after rewriting. But is it possible, to get the best possible result
without changing the function?

In order to change the result without changing the function, we have to change the
parameters. Setting both the epsilon and the precision to 50 gives us the following
intervals after 11 iterations:
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[
−2− 2−49,−2 + 2−50

]
; [1, 1] ; [3, 3]

This is a more accurate approximation, but still not the optimal result [−2,−2] we
achieved with f6o . The result of f6 after 12 iterations and setting both parameters to 79
is optimal:

[−2,−2] ; [1, 1] ; [3, 3]

However, if we set both epsilon and the precision to for example 86, after 12 iterations
we get a worse result than before:[

−2− 2−85,−2 + 2−86] ; [1, 1] ; [3, 3]

And if we go back to 79 for both epsilon and precision, but take these parameters for
f6′ , the method terminates after 11 iterations with the following result:

[−2,−2] ; [1, 1] ;
[
3− 2−78, 3 + 2−77]

This example shows, how much the final result is not only depending on the parameters
but also how the function is defined. But why is that? The reason for this is hidden
in the Approximation package, and to be more concrete in the DERIV_floatarith
and the approx function. All variations of f6 have the derivative 3x2 − 4x− 5 but in
different forms. The correct bounding interval F′ would be

[
−6 1

3 , 335
]
, the enclosure

of the midpoint is F = [6, 6]. However, looking at the calculated derivatives and more
importantly on the approximated enclosures F′ we see quite some differences:

Function Derivative F′ F

f6 f ′6 = (x− 1)(x + 2) + (2x + 1)(x− 3) [−610, 590] [6, 6]

f6′ f ′6′ = 3x2 − 4x− 5 [−45, 335] [6, 6]

f6o f ′6o
= 3xx− 4x− 5 [−645, 635] [6, 6]

Table 4.2: Effects of Rewriting Functions

This is rather surprising, as the most accurate approximation of F′ delivers the worst
result and vice versa. Of course, this is only the first step and not what I want to focus
on. More important is the possible effect rewriting a function can have, as the width of
the approximation of the same function differs between 380 and 1280, which is more
than threefold.
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Probably more interesting than finding trivial roots of factorised polynomials is the
approximation of irrational numbers, for example

√
2. This is, because there are no

natural numbers so that (n/m)2 = 2. Therefore the result of an equation like x2− 2 = 0
can only be approximated, if just writing

√
2 is not an option. This equation not only

has an irrational number as a result, but is in the perfect form of what the interval
Newton method is about. Replacing 0 with f9(x) we have a function, with the method
we can approximate the roots of f9 and thus approximate

√
2. In the next examples we

look at functions with square roots as roots, some of them are irrational, some of them
not:

Function Result Iterations

f7(x) = xx
[
−4.887× 10−10, 0

]
;
[
0, 1.449× 10−9] 27

f8(x) = xx− 1 [−1,−1] ; [1, 1] 10

f9(x) = xx− 2 [−1.414 - −1.414] ; [1.414 - 1.414] 9

f10(x) = xx− 3 [−1.732 - −1.732] ; [1.732 - 1.732] 9

f11(x) = xx− 4 [−2,−2] ; [2, 2] 8

f12(x) = xx− 5 [−2.236 - −2.236] ; [2.236 - 2.236] 9

Table 4.3: Square Roots

Before we talk more about the roots, it is notable, that f7 needs more than twice the
iterations as all other functions, we looked at so far. The reason for this is the multiple
root 0. Multiple roots are a known numerical difficulty and a quote by Goedecker sums
this up very well:

If roots of high multiplicity exist, [any] method [for finding roots has] to be
used with caution. [1, P. 1063]

Now let us have a closer look on the approximation of the square roots. Therefore we
look at the approximations of the positive roots of f9, f10 and f12, the approximations
of
√

2,
√

3 and
√

5:

√
2 ∈ [1.414213561452925205230712890625, 1.41421356238424777984619140625] =: I9√
3 ∈ [1.732050807215273380279541015625, 1.73205080814659595489501953125] =: I10√
5 ∈ [2.2360679768025875091552734375, 2.23606797866523265838623046875] =: I12
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All three intervals are rather small and therefore the approximations accurate. Let us
have a closer look at the width of these intervals:

w(I9) = 9.313× 10−10

w(I10) = 9.313× 10−10

w(I12) = 1.863× 10−9

The obvious question is if we can decrease the width in order to increase the accuracy.
And yes, setting both the epsilon and the precision argument to higher values leads to
better approximations. In the next table only the widths of the intervals, approximating
the respective square roots, are listed. Also, the starting interval is set to [0, 5].

Precision/
Epsilon

Accuracy
√

2 Accuracy
√

3 Accuracy
√

5 Iterations

30 9.313× 10−10 9.313× 10−10 1.863× 10−9 7, 7, 7

40 9.095× 10−13 9.095× 10−13 1.819× 10−12 7, 7, 8

50 8.882× 10−16 8.882× 10−16 1.776× 10−15 7, 8, 8

100 7.889× 10−31 7.889× 10−31 1.578× 10−30 8, 9, 9

500 3.055× 10−151 3.055× 10−151 6.110× 10−151 11, 11, 11

Table 4.4: Accuracy of Root Approximations

There are two interesting observations to be made: The approximations of
√

2 and√
3 have the same interval width for these arguments and, more importantly, the

method does not need that many more iterations for way better quality. One more
extreme example: The approximation of

√
2 with setting both the precision and epsilon

arguments to 10000 the implementation does need 15 iterations, with 100000 it ends
after 19 iterations.

4.2 Advanced Cases

For the more advanced cases, we increase both the epsilon and the precision value and
set them to 50.
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4 Examples

We start with a function with a root of the high multiplicity 50, namely f13 = x50. After
56 iterations we get a good result in the interval [−10, 10], if we take into account, that
roots of these functions are often rather difficult to calculate:[

−8.882× 10−16, 0
]

;
[
0, 8.882× 10−16

]
In the next step, we once again approximate an irrational number, namely π. The
interval, in which we search for roots of f14 = sin(x), is [2, 4]. After 7 iterations we get
the following result:

[3.142 - 3.142] =: I14 =⇒ w(I14) = 7.105× 10−15

There is one more “famous” irrational number left, which is e. In the interval [1, 3] we
search for the root of f15 = ln(x)− 1. The implementation terminates after 6 iterations
with the following result:

[2.718 - 2.718] =: I15 =⇒ w(I15) = 5.329× 10−15

As the natural logarithm is the inverse function of ex, the same holds for the Lambert
W-function and xex. Using the interval Newton method we can approximate W(z) by
searching the roots of f (x) = xex − z. For example we approximate W(23), a root of
the function f16(x) = xex − 23, in [1, 3]. After 11 iterations we get the following result:

[2.302 - 2.302] =: I16 =⇒ w(I16) = 5.329× 10−15

4.3 Corner Cases

Now we take a look at some corner cases with epsilon and the precision being 50:

Function Interval Result Iterations

f17 = x2 [
2−30, 10

]
∅ 24

f17 = x2 [
2−50, 10

] [
8.882× 10−16, 1.896× 10−15] 38

f18 = x2 − 2
[
2−50, 10

]
∅ 3

f18 = x2 − 2
[
2−100000, 10

]
∅ 3

f19 = sin(x + 1)
[
−1 + 2−30, 2

]
∅ 3

f19 = sin(x + 1)
[
−1 + 2−50, 2

] [
−1 + 2−50,−1 + 15 · 2−51] 6

Table 4.5: Roots Outside of Starting Interval

29



4 Examples

We start with functions possessing roots that are not included in the interval by a small
margin. These examples show, that our bounds often have to come very close to the
root to get false positives. This is a good time to recall that while we have proven, that
we do not lose any root applying the method, we cannot prevent intervals without a
root in our result. In the examples we get these wrong approximations for f17 and f19

using the small distance of 2−50.

In the following examples we take a look at functions where one of the bounds of
the starting interval is a root. Also, I added the result if the root is inside the starting
interval for direct comparison, the corresponding rows are highlighted:

Function Interval Result Iterations

f20 = x + 3 [−10,−3] [−3,−3] 2

f20 = x + 3 [−3, 10] [−3,−3] 2

f20 = x + 3 [−10, 10] [−3,−3] 2

f21 = x2 − 9 [−10,−3]
[
−3− 1.776× 10−15,−3

]
7

f21 = x2 − 9 [−3, 0]
[
−3,−3 + 1.776× 10−15] 7

f21 = x2 − 9 [0, 3]
[
3− 1.776× 10−15, 3

]
7

f21 = x2 − 9 [3, 10]
[
3, 3 + 1.776× 10−15] 7

f21 = x2 − 9 [−10, 10] [−3,−3] ; [3, 3] 10

f22 = sin(x) [−2, 0]
[
−2.119× 10−15, 0

]
6

f22 = sin(x) [0, 2]
[
0, 5.354× 10−15] 6

f22 = sin(x) [−2, 2]
[
−2.119× 10−15, 0

]
;
[
0, 5.354× 10−15] 7

Table 4.6: Roots at Bounds of Starting Interval

The result for each of these examples behaves a little different: For f20, the interval does
not have any difference, the result is the same and so is the number of iterations.

In the example of f21 we can see that the quality of the approximation of the root
decreases if the root is at the interval bound. Of course, the offset is low; however, if
the root is not equal to a bound, the approximation would be exact. This distance can
be small, the result of the method for the interval

[
−3− 2−50, 3 + 2−50] is the desired

interval [−3,−3] and [3, 3].
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4 Examples

In the third example, we approximate the only rational root of sin(x), which is 0. Here
we cannot achieve a better result with enlarging the interval, instead, the opposite
happens: In the first iteration we split the starting interval into the two intervals [−2, 0]
and [0, 2]. This also explains why the result is simply the concatenation of the previous
results and takes one more iteration to terminate. To prohibit this split, we can use
the starting interval [−1, 2] and get the result

[
−2.335× 10−15, 2.671× 10−15]. Now the

root does not appear twice in the result, however, it is still not the optimal result [0, 0],
which I could not find in testing.

Lastly we look at two functions without a root, despite getting infinitely close to it:

Function Interval Result Iterations

f23 = x−1 [−1000000,−500000] ∅ 1

f23 = x−1 [500000, 1000000] ∅ 1

f24 = ex [−1000000,−500000] ∅ 20

Table 4.7: Functions Converging to Zero Without Roots

For both functions, the method does result in an empty list, our desired result.
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5 Conclusion

With approximately 1000 lines of code, I have successfully formalised the interval
Newton method using the proof assistant Isabelle/HOL. With this implementation,
it is possible to approximate the roots of many types of functions, supported by the
floatarith datatype.

The main part of this thesis is the proof that we do not lose any roots using the method,
so this was an expected outcome during testing. A positive surprise, however, was the
quality of our results. Except from functions with roots of high multiplicity or irrational
roots we often got perfect results. And speaking of irrational roots, we have also shown
that we can use this method to calculate good approximations of square roots and π,
for example, in a reasonable time.

Additionally, using this method, in theory, it would be possible to implement the
Lambert W-function in Isabelle/HOL. Maybe the floatarith datatype could be extended,
as of right now both the exponential function and the natural logarithm are supported,
however not the Lambert W-function.

Future Work

For a possible work in the future, the next step would be the support of more than just
one variable for functions, which would enable more than just one dimension.

Right now, the quality of our implementation is heavily dependent on the quality of
the approximations of enclosures. Recalling the effect, what simple rewriting can have
on the calculation of enclosures (4.2), it could be possible to increase the quality of our
results by getting better approximations.

Another possibility to improve our results is some sort of post-processing. Right now
we have our results as soon as the recursive function terminates. There certainly is some
unused potential to filter out intervals containing no root and to merge overlapping
intervals containing the same root.
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