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Abstract

In recent years, increasingly powerful proof automation has been introduced to in-
teractive theorem provers such as Isabelle. This automation necessitates efficient data
structures to index and query sets of terms. So-called term indices provide queries for
retrieving variants, instances, generalisations and unifiables of a given term. Two indexing
techniques, path indexing and discrimination tree indexing are reviewed. We implement
path indexing for first-order terms in Isabelle/ML and adapt it to the more general term
indexing interface defined in Isabelle/ML. We further define a unified interface for the
path index and the previously implemented discrimination tree index, thereby clearing the
way for the implementation of additional term indices in the future. Lastly, we evaluate
the performance of path indexing in relation to discrimination tree indexing.
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1 Introduction

1.1 Motivation

Modern automated theorem provers can efficiently work on thousands of terms. One key
ingredient for this is the effective use of efficient term indexing techniques. Each such
technique for term indexing offers a different set of advantages and drawbacks, depending
on both the structure of the indexed terms and the type of queries performed. As a result,
many automated theorem provers use a combination of different term indices to provide
a performant index for every query.
For example, Vampire uses code trees, path indexing and discrimination trees for

different proof methods [1]. Other automated theorem provers, such as E [2] and SPASS
[3], also take advantage of multiple term indexing techniques.

Interactive theorem provers, such as Isabelle, have traditionally placed more emphasis
on trustworthiness and streamlined processes. In more recent times, large verification
projects, such as the CompCert C-compiler [4] and the seL4 microkernel [5], became
more prominent. Moreover, the Archive of Formal Proofs [6] has been steadily growing,
currently hosting more than 165.000 theorems and 3 million lines of code. All these
projects have shown the need for better proof automation.
One approach to this problem is Sledgehammer, a tool to apply automated theorem

provers to goals in Isabelle. While this allows Isabelle to benefit from the work on
automated theorem provers, it is faced with many hurdles. Each invocation requires
the conversion of the internal representation of the goal and knowledge base to the
representation of each prover and, upon success, a reconstruction of the proof in Isabelle.
[7, 8]
Another approach is building general proof methods directly in Isabelle, which relies

on term indexing to achieve comparable performance. So far, term indices were used
only sparingly in Isabelle as most proof methods were not limited by the performance
of term indices. Therefore, only an implementation of discrimination trees is provided
as part of the Isabelle/ML environment. As increasingly complex proof automation is
written in Isabelle’s user space, more term indexing techniques are required to exploit
their respective strengths.
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1 Introduction

1.2 Contributions

To address this need for more term indices, we defined a unified interface for them. This
interface will simplify the implementation of additional term indices and allow users to
swap one term index for another with minimal effort. Thereby, a user can choose the
most performant term index for their context. The interface in its current form is limited
to the functions previously implemented by the discrimination tree index but can easily
be extended.
In addition to the interface, we provide an implementation of path indexing for first-

order terms. Adapting path indexing from its standard representation in the literature to
the more general term indexing interface defined in Isabelle/ML is the main contribution
of this thesis. A major challenge was the generalisation of path indexing to store sets
of values indexed by terms rather than only storing terms in an efficient manner. The
implementation can be found in the repository1

To increase our confidence in the correctness of our optimised implementation we also
adapted SpecCheck [9], a testing suite for Isabelle/ML inspired by QuickCheck [10]. We
implemented a widely applicable term generator and used it for our tests and benchmarks.
While doing so, we also modularised, documented and refactored the SpecCheck framework
to increase reusability and code quality. Those changes are not discussed in this thesis.
Interested readers can find the updated framework in the repository2. We plan to upstream
the changes to the Isabelle repository in the near future.

1.3 Thesis Outline

Chapter 2 starts with the preliminaries of this thesis, including a brief overview of terms
in first-order logic, λ-calculus and Isabelle/ML. We also introduce the term indexing
problem. In Chapter 3, we introduce the path indexing and discrimination tree indexing
methods formally. In addition, we discuss the complications faced while implementing
and optimising path indexing for Isabelle/ML.

In Chapter 4 we evaluate the performance of our evaluation. Section 4.2 focuses on the
effect of the optimisations and Section 4.3 on the relative performance of path indexing
and discrimination trees with regards to the queries and the insertion and deletion of
terms from the index. We address potential shortcomings of our evaluation in Section 4.4.
We conclude the thesis with a brief summary of our results in addition to some final

thoughts on potential future developments and related work.

1https://github.com/Willenbrink/bachelorthesis
2https://github.com/kappelmann/SpecCheck
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2 Preliminaries

2.1 First-Order Logic

First-order logic is a formal language used to, amongst others, formalise reasoning,
including artifical intelligence, logic programming and automated deduction systems. In
this thesis we are only interested in terms. Therefore, we disregard formulas, relations
and quantifiers. A more extensive introduction can be found in [11].
A symbol is either a variable, a constant or a function. We choose all variables

from the infinite set V = {x, y, z, x1, x2, . . . }, all constants from the infinite set C =
{a, b, c, c1, c2, . . . } and all functions from the infinite set F = {f, g, h, f1, f2, . . . }. When-
ever possible, we use only the first three symbols of each set for better readibility.

The arity of a symbol arity(s) is a positive integer representing the number of arguments
the symbol is applied to. All constants have a fixed arity of 0 while every function f has a
fixed arity(f) ≥ 1. A variable x has an arbitrary but fixed arity depending on its context.
A term in first-order logic, chosen from the infinite set T = {t, u, v, t1, t2, . . . }, is a

symbol s applied to arity(s) arguments, where each argument again is a term.

Example 2.1. Assume arity(f) = 1 and arity(g) = 2 and, for all other symbols s,
arity(s) = 0. Then, the terms f(a) and g(f(x), a) are well-formed while the terms f(a, b),
f(g) and a(b) are not.

2.1.1 Generalisation and Unification

Definition 2.2. A substitution is a partial function ρ : V −→ T . We denote by tρ the
term obtained by replacing all variables v in t by vρ if v is in the domain of ρ. We write
[t1/x1, . . . , tn/xn] for the substitution {x1 7→ t1, . . . , xn 7→ tn}.

When applying the substitution ρ = [a/x] to the term t = f(x, y), we get the term
f(a, y) = tρ. As y is not in the domain of ρ, it is not modified in the term. Note that ρ is
applied only once to the term, that is, x[y/x, a/y] = y even though y would be substituted
by a in the original term.

Definition 2.3. Given two terms t, u, we say that t is a generalisation of u and u an
instance or specialization of t if and only if there exists a substitution ρ such that tρ = u.
Similarly, we call t and u unifiable if and only if there exists a substitution ρ such that
tρ = uρ. In this case, ρ is called a unifier of t and u.

3



2 Preliminaries

Example 2.4. Let t = f(x) and u = f(g(a)). Set ρ = [g(a)/x]. Then tρ = f(g(a)) =
uρ = u. Hence, t is a generalisation of u, t and u are unifiable and ρ is a unifier t and u.

The question of whether term t is a generalisation of term u is also known as the
matching problem in the literature. Similarly, determining whether t and u are unifiable
is called the unification problem. [12]

2.1.2 Variable Identity

When solving a matching or unification problem, we must pay attention to variables
occuring multiple times. For example, f(x, x) is not a generalisation of f(a, b) as x cannot
be substituted by both a and b. Similarly, t = x is a generalisation of u = f(x) using the
substitution ρ = [f(x)/x] but they are not unifiable.

Tracking substitutions for variables while solving matching problems in term indices, as
is done in this thesis, complicates matters substantially. Most work in the literature and
practical implementations hence simplify matters by disregarding the identity of variables.
That is, they replace them by a placeholder term, which we call ∗. For example, the
terms f(x, y) and f(z, z) are both treated as f(∗, ∗) and are therefore not differentiated.
We also employ this simplification in this thesis.

Definition 2.5. Variants are terms identical up to loss of variable identity.

Each ∗ is treated as a unique placeholder and, while solving a matching problem, we
assign each ∗ a unique index. For example, the terms f(∗1, a) and f(b, ∗2) are unifiable
with unifier ρ = [b/∗1, a/∗2].

2.2 Lambda Calculus

The λ-calculus is a formal language used to express computation based on functions. It is
defined by a grammar for constructing λ-terms and rules for reducing them. The set of
terms T of the untyped λ-calculus is defined as follows:

1. An infinite set V of variables. Each variable is a term.

2. If t is a term and x is a variable, then λx.t is a term. This is called an abstraction
and represents a function with parameter x.

3. If t and u are terms, then tu is also a term. This is the application of the first
argument to the second one.

In this thesis, we are only concerned with the lambda calculus as far as we have to
model first-order terms as part of the lambda calculus-based language of Isabelle. We are
hence ot be concerned with reduction rules nor types in this thesis. For a more detailed
introduction, see for example [13].

4



2 Preliminaries

2.3 Isabelle

Isabelle is a generic interactive theorem prover. By design, it uses a metalogic, called
Isabelle/Pure, to embed other logics and provide a deduction framework. To do so,
Isabelle/Pure uses a higher-order logic. The very basis of this metalogic are simply typed
λ-terms within which theorems and inference rules are embedded. [14]

Isabelle is written for the most part in Standard ML (SML) and can also be extended
at runtime. It is divided into a small kernel that verifies the correctness of all proofs and
the user space within which one can axiomatise new theories and build stronger proof
automation.

2.3.1 Term Representation in Isabelle

The λ-terms are a variant of simply typed λ-calculus. They are defined, with minor
changes for the sake of simplicity, as follows:

datatype term =
Const of string * typ

| Free of string * typ
| Var of string * typ
| Bound of int
| Abs of string * typ * term
| $ of term * term

1. Const and Free both represent a fixed symbol. The latter is used to represent fixed
variables in the process of a proof. In this thesis, this distinction is irrelevant: both
will be treated as first-order constants.

2. Var represents a variable, i.e. it is a placeholder and can be replaced by an arbitrary
term of the same type.

3. Bound is a variable bound by a lambda term encoded as a de Bruijn index [15].

4. Abs is an abstraction. Although Isabelle uses de Bruijn indices, variables are named
for pretty printing purposes.

5. $ represents the application of the first argument to the second one.

Note that we will ignore the types of terms and simply assume type correctness of all
given terms. The application $ is written infix and is left-associative, i.e. f x y is written
as Const f $ Var x $ Var y whereas f (g x) is written as Const f $ (Const g $ Var
x). The λ-term (λx. x) a can be represented as Abs x (Bound 1) $ Const a. As there

are no tuples in this term representation, all functions are curried by default. That is,
Abs x (Abs y (Const f $ Bound 2 $ Bound 1)) represents the λ-term (λx y. f x y).

5



2 Preliminaries

We can embed first-order terms in these λ-terms. Variables with an arity of 0 and
constants map directly to Var and Const respectively. Likewise, a function symbol can
be represented using Const. Terms involving functions are represented by a chain of
applications of the constituent subterms. For example, the term f(a, g(x)) is represented
by Const f $ Const a $ (Const g $ Var x). Note the parentheses around g(x) to
differentiate this term from f(a, g, x).

We assume for the sake of simplicity that every term consists of only Const, Free, Var
and $. Occurrences of Free are treated as Const. Abs are not required for first-order
terms and dangling Bounds, that is, indices pointing to a non-existing abstraction, are
excluded, too.

2.4 Term Indexing

A term index is a data structure that allows us to efficiently store and query a set of
terms. It provides, for example, a unifiables query that takes a term index and a term t
and retrieves all terms from the term index that are unifiable with t.

Definition 2.6. A term index is an indexed set of terms I together with the query
operations variants(t), instances(t), generalisations(t) and unifiables(t) that return the
variants, instances, generalisations and unifiable terms with respect to t stored in I,
respectively. Moreover, it provides two operations insert(t) and delete(t) to insert and
remove a term t from the indexed set of terms.

A term index usually shares structures of similar terms to improve its performance. For
example, when retrieving unifiable terms from the set {f(∗), f(a), f(g(a)), g(a)} with the
query term g(x) and f(∗) fails to unify with g(x), there is no need to also check whether
f(a) is a feasible candidate as it is an instance of f(∗).

There is a great variety of term indices and their grouping mechanisms. Furthermore,
some term indices can also implement other operations efficiently. Some examples,
discussed in more depth in [16], are the union of two indices and the retrieval of terms
unifiable with any term in a query set.
Many specialised operations can be implemented but, alas, we cannot predict which

operations will be used. As they can be emulated less efficiently by the simpler operations,
we will limit ourselves to the basic query operations, retrieving all the variants, instances,
generalisations and unifiables of a query term.
As mentioned in Section 2.1.2, we disregard identity of variables. By doing so, we

simplify the implementation significantly but obviously obtain incorrect results when
retrieving terms. To be precise, the queries will potentially return incorrect terms in
addition to the correct terms.

Definition 2.7. A query returning a superset of the correct answer is called an overap-
proximating query. Similarly, we call a term index overapproximating if it supports only

6



2 Preliminaries

overapproximating queries.

Depending on the context, we may use this overapproximated result either directly or
filter the returned overapproximation with some post-processing methods to obtain the
exact set of candidates. Handling the identity of variables correctly in the term index
significantly complicates the implementation and sometimes even performs worse than
an overapproximative approach [16]. We hence focus on overapproximative approaches
disregarding the identity of variables in this thesis.

7



3 Term Indexing

In the following sections we give an overview of path indexing and discrimination trees.
We also take a closer look at some details of their implementation in Isabelle/ML as they
differ in many places significantly from the approaches chosen in most literature.

3.1 Path Indexing

A term can be represented as a tree with all symbols s with arity(s) = 0 as leafs and
all functions f(x1, . . . , xn) as internal nodes with the xi as children. Within this tree,
every symbol has a position determined by the nodes traversed to reach this symbol. We
represent this as a sequence of (symbol, index) pairs with the index describing which
argument of a function is traversed. We call this sequence a path. The path of a symbol
s begins with the top symbol and ends with the index at which s is located. For example,
〈(f, 2), (g, 1)〉 is the path of the symbol a in t = f(x, g(a, b)). Figure 3.1 shows all the
paths and symbols of t. We represent a path by enclosing the sequence of (symbol, index)
pairs with 〈〉.

Definition 3.1. A path is a sequence of (symbol, index) pairs where the index describes
the index of the next argument to traverse.1 symbolt(p) refers to the symbol associated
with path p in the term t.

Tree Representation Path p symbolt(p)

f

g

ba

x

〈〉 f
〈(f, 1)〉 ∗
〈(f, 2)〉 g
〈(f, 2), (g, 1)〉 a
〈(f, 2), (g, 2)〉 b

Figure 3.1: The paths and associated symbols of t = f(x, g(a, b))

A (path, symbol) pair can be interpreted as a constraint on a term where at path
path there must be the symbol symbol. For example, the constraint (〈(f, 1)〉, c) is only
fulfilled by terms of the form f(c, . . . ). A term gives rise to a set of (path, symbol) pairs,

1This is in contrast to coordinate indexing which only uses a sequence of indices [17].

8



3 Term Indexing

which, when interpreted as constraints, uniquely identify this term up to loss of variable
identitification.
A term t can either be represented by a set of paths and the symbolt mapping or by

listing each associated symbol explicitly in a set of (path, symbol) pairs where symbol =
symbolt(path). We will choose whichever notation is clearer in the given context.

3.1.1 Structure

A path index builds on this idea of constraints and associates each (path, symbol) pair
with a set of terms that fulfill this constraint. For example, a path index storing the
terms {f(x), f(a), g(a)} will associate (〈〉, f) with the two terms f(x) and f(a).

Definition 3.2. A path index is a function index : Path× symbol −→ 2Term that maps
a constraint (path, symbol) to the set of terms that fulfill this constraint and are stored
in the path index.

Storing the terms of index such that it can be quickly evaluated for a (path, symbol)
pair can be achieved in multiple ways. We decided to use a prefix-sharing tree based
approach as many of the paths share prefixes. The nodes of the tree contain a function
termsp : symbol −→ 2T where p is the path from the root to the node. The edges are
labelled with (symbol, index) pairs, which correspond to the elements of a path.
Figure 3.2 shows a path index stored as a prefix-sharing tree. Note that we only use

numbers to represent terms for better readability. The root contains a mapping from the
symbol f to all three terms as they all share this path. In the first argument, reached by
the edge (f, 1), the symbol a is mapped only to the first term whereas ∗ is mapped to the
other two terms.

{f 7→ {1, 2, 3}}

{b 7→ {1, 2}, ∗ 7→ {3}}{a 7→ {1}, ∗ 7→ {2, 3}}

(f, 1) (f, 2)

Index Term
1 f(a, b)
2 f(x, b)
3 f(y, z)

Figure 3.2: A path index storing three terms

When we insert a path p of a term t, we start at the root and traverse the tree according
to p. Once we reach the end of p we extend termsp(symbolt(p)) by {t}. To insert a term
we simply insert all the paths that describe this term. This requires the insertion of many
similar paths which benefits from the prefix sharing. Deleting a term t is done almost
identically. Instead of extending the termsp(symbolt(p)) by {t}, we remove it.

9



3 Term Indexing

3.1.2 Queries

Queries are answered by combining the different termsp(s) sets with intersections or unions
to retrieve a set of terms. For example, a variants query for the term t = f(x, g(a, b))
procedes as follows:

1. Compute the set of (path, symbol) pairs describing the term.

2. Retrieve the corresponding termsp(s) from the index.

3. Intersect the termsp(s) to retrieve only the terms u containing the same symbols
at identical paths as the query term, that is, symbolt(p) = symbolu(p)

Under the assumption of consistent typing, we retrieve only terms of identical structure
as the query term. Due to the loss of variable identity we also retrieve variants of the
query term in addition to the query term itself (if it is stored in the index).
To retrieve the unifiables of a term from the index, we can use some observations

regarding the unification problem.

1. A variable is unifiable with any other term

2. Constants are unifiable with themselves and variables

3. A function f(x1, . . . , xn) is unifiable with term t if and only if t = x or t =
f(y1, . . . , yn) where, for all i, xi is unifiable with yi.

Using this, we can define an algorithm recursing on the structure of the query term
while intersecting and unifying the different path sets of the index. Table 3.1 shows
the recursive definition for all the queries. As can be seen, the different queries are
quite similar, with variants being the most restrictive and unifiables the least restrictive.
AllTerms is the set of all terms stored in the index and represents a wildcard at this
path as intersecting AllTerms with an arbitrary termsp returns termsp.

Query
Arguments

Q(p, x) Q(p, a) Q(p, f(t1, . . . , tn))

Q = variants termsp(∗) termsp(a)
⋂

iQ(〈p, (f, i)〉, ti)
Q = instances AllTerms termsp(a)

⋂
iQ(〈p, (f, i)〉, ti)

Q = generalisations termsp(∗) termsp(a) ∪ termsp(∗)
⋂

iQ(〈p, (f, i)〉, ti) ∪ termsp(∗)
Q = unifiables AllTerms termsp(a) ∪ termsp(∗)

⋂
iQ(〈p, (f, i)〉, ti) ∪ termsp(∗)

Table 3.1: The recursive definition of the queries

10



3 Term Indexing

3.2 Discrimination Tree

A discrimination tree index, also known as discrimination net index, is a prefix-sharing
tree, similar to a trie, which stores the indexed terms. To determine the leaf at which a
term is stored we use the preorder traversal of the term. It is obtained by simply reading
the written term from left to right. For example, the preorder traversal of t = f(c, g(x, y))
is 〈f, c, g, x, y〉. Since we disregard variable identities, this will further be simplified to
〈f, c, g, ∗, ∗〉.

Definition 3.3. preorder(t) is the sequence of symbols obtained by the preorder traversal
of the term t. For symbols s with arity(s) = 0 it is the symbol s itself. The preorder
traversal of a function f(x1, . . . , xn) is 〈f, preorder(x1), . . . , preorder(xn)〉 For the sake
of simplicity, we flatten the sequence, e.g. 〈f, 〈g, x〉〉 becomes 〈f, g, x〉.

3.2.1 Structure

We store the mapping preorder(t) 7→ t in the prefix-sharing tree. The symbols in the
preorder(t) sequence are the labels of the edges leading to a leaf where t is stored. Internal
nodes store no information. preorder(t) always addresses a leaf as, under the assumption
of type consistency, it is impossible for preorder(t) to be a prefix of preorder(u) if t 6= u.
A discrimination tree storing multiple terms can be seen in Figure 3.3. As can be seen,
the common prefix f of all terms is shared in memory. On the other hand, the common
postfix b is not shared.

root

{f(g(a), b)}
b

a
{f(x, b)}

b

{f(a, b)}
b

a ∗
g

f

Figure 3.3: A discrimination tree index storing three terms

Insertion and deletion are straightforward in discrimination tree indexing. When
inserting a term t, we traverse the tree according to preorder(t), reaching a leaf, and
insert t into the set at the leaf. Deletion works identically, except we remove the term
from the set.

11



3 Term Indexing

3.2.2 Queries

The queries are implemented as a recursive algorithm on the nodes of the tree and
preorder(t) of the query term t. Starting at the root, we traverse the tree by selecting
the child node corresponding to the first symbol of preorder(t). We recursively continue
at the child node while removing the first symbol from the sequence. For example, a
variants query for f(y, b) on the index in Figure 3.3 would traverse the tree by following
the edges 〈f, ∗, b〉, retrieving the term f(x, b)

Definition 3.4. slp(N, s) is the symbol lookup operation. It takes a node N of the
discrimination tree and a symbol s, returning the child node of N reached by following
the edge labelled with symbol s. If no such node exists, we return an empty node with
no children. We write repeated applications of slp, such as slp(slp(slp(N, a), b), c), as
slp(N, 〈a, b, c〉)
Definition 3.5. terms(N) retrieves the terms stored in N . If N is not a leaf, we return
the empty set.

slp and terms can both be implemented very efficiently and using them, we can write
the variants query as terms(slp(root, 〈f, ∗, b〉)). Unfortunately, the other queries are more
intricate as they may replace variables by arbitrary terms or vice versa, with unification
allowing both.

For every constant symbol in the term of a generalisations or unifiables query, we form
the union of both the query on the node slp(N, c) as well as slp(N, ∗). This ensures that
indexed terms containing variables instead of constants are also retrieved. For exam-
ple, the unifiables of f(a, b) are retrieved by forming the union of terms(slp(M, 〈a, b〉))
and terms(slp(M, 〈∗, b〉)) where M = slp(root, f), in addition to the empty sets of
terms(slp(root, ∗)) and terms(slp(root, 〈f, a, ∗〉)).
A variable in the instances or unifiables query term must also be handled differently.

As the variable can be substituted arbitrarily, we continue the query at every child of the
current node, taking the union of the retrieved terms. For example, all the terms stored
in Figure 3.3 are instances of f(∗, b). We notice that at the node M = slp(root, f), we
must continue in every branch.
But what about functions? The variable may be replaced by terms with an arbitrary

number of arguments. We must skip the nodes corresponding not only to g but also each
argument x1, . . . , xn of g(x1, . . . , xn). When continuing in the g branch, we must not
continue at slp(M, g), but at slp(M, 〈g, a〉), that is, we need to skip not only g but 〈g, a〉
as the variable is substituted by g(a). Figure 3.4 shows the nodes reached by skipping a
subterm after reaching the node slp(root, f), i.e. skip(slp(root, f))

Definition 3.6. skip(N) returns the set of nodes obtained by skipping a single term
starting at N . That is, for a constant c with arity(c) = 0 we return slp(N, c) (which is a
direct child of N). For a function f(x1, . . . , xn), we return the nodes skipn(slp(N, f)). If
for all xi arity(xi) = 0, skipn retrieve the nodes 1 + n levels below N .

12
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root

{f(g(a), b)}
b

a
{f(x, b)}

b

{f(a, b)}
b

a ∗
g

f

Figure 3.4: The Nodes in skip(slp(root, f))

Using this, we can retrieve all the nodes reached by replacing the variable in the query
term with some term. The union of the terms returned by the query on each node
represents the result. An overview of all the queries is given in Table 3.2. The base case
of Q(N, 〈〉) = terms(N) is identical for all queries and not included in the table. Note
that variants is the simplest and most restrictive query, unifiables is the most complex
and least restrictive with instances and generalisations being a combination of both.

Query

Arguments
Q(N, 〈x, t2, ..., tn〉) Q(N, 〈a, t2, ..., tn〉) Q(N, 〈f(x1, . . . , xn), t2, ..., tn〉)

Q = variants Q(slp(N, ∗), 〈t2, ..., tn〉) Q(slp(N, a), 〈t2, ..., tn〉) Q(slp(N, f), 〈x1, . . . , xn, t2, ..., tn〉)

Q = instances
⋃

M∈Skip(N)

Q(M, 〈t2, ..., tn〉) Q(slp(N, a), 〈t2, ..., tn〉) Q(slp(N, f), 〈x1, . . . , xn, t2, ..., tn〉)

Q = generalisations Q(slp(N, ∗), 〈t2, ..., tn〉) Q(slp(N, a), 〈t2, ..., tn〉)
∪Q(slp(N, ∗), 〈t2, ..., tn〉)

Q(slp(N, f), 〈x1, . . . , xn, t2, ..., tn〉)
∪Q(slp(N, ∗), 〈t2, ..., tn〉)

Q = unifiables
⋃

M∈Skip(N)

Q(M, 〈t2, ..., tn〉) Q(slp(N, a), 〈t2, ..., tn〉)
∪Q(slp(N, ∗), 〈t2, ..., tn〉)

Q(slp(N, f), 〈x1, . . . , xn, t2, ..., tn〉)
∪Q(slp(N, ∗), 〈t2, ..., tn〉)

Table 3.2: The recursive definition of the queries

3.3 Term Indexing in Isabelle/ML

As Isabelle has now been used for over 30 years, a number of data structures have already
been implemented to store terms. One of the simplest approaches is the termtable 2, a
balanced 2-3 tree, storing terms and differentiating them on all attributes, namely their

2https://isabelle-dev.sketis.net/source/isabelle/browse/default/src/Pure/term_ord.ML;
89cf7c903acad179e40c10f2f6643d3c21448f47$226
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structure, symbols and types. Therefore, this approach is best used when an exact lookup
is necessary. On the other hand, termtable does not offer any support for the more
complex queries such as instances or unifiables.
Another data structure present in Isabelle is the discrimination tree 3. Despite

being based on the concepts introduced above, the discrimination tree implementation in
Isabelle/ML stores arbitrary sets of values indexed by terms. This is useful when we want
to tag terms with multiple attributes, for example, introduction and simplification rules.
The interface of the discrimination tree is mostly identical to the one introduced in

Section 2.4. The queries return sets of values instead of sets of terms and insertion and
deletion use key-value pairs, similar to hash tables. To modify the stored values, we use
a term to address a leaf and insert or delete values from the respective value set. In
addition, the index raises an exception if it detects duplicate key-value pairs. The value
comparison used for the detection of duplicates is supplied by the user and can, therefore,
also be the constant function returning false, i.e. eq(v1,v2) = false.

3.3.1 Caveats of current Implementation

The generalisation of storing terms to storing arbitrary sets of values is relatively simple for
discrimination trees. Each leaf is addressed by only one preorder traversal and therefore
stores only variants of one term. As such, we can simply replace this set of terms with a
set of arbitrary values.

When inserting or deleting a value for a term t, preorder(t) is used as the key to address
the node where the value should be stored at. This results in some potentially surprising
behaviour. We illustrate this with some examples. We write (t, v) for term-value pair
stored and DT for the (initially) empty discrimination tree.

1. Inserting (a, true) and (b, true) into DT stores true at both a and b. Retrieving
the unifiables of x returns the multiset {true, true} as both a and b are unifiable
and the queries do not deduplicate the results.

2. Inserting (x, true) and (y, true) into DT results in an exception as both are stored
in the same node of the tree and the values are identical.

3. Similarly, deleting (y, true) after inserting (x, true) into DT deletes the value.

4. Inserting (x, x) and (y, y) into DT stores both variables x and y in the same node
as the values are different.

5. After inserting (x, true) into DT , we cannot delete this value without knowing the
term used to address the node where the value is stored.

3https://isabelle-dev.sketis.net/source/isabelle/browse/default/src/Pure/net.ML;
89cf7c903acad179e40c10f2f6643d3c21448f47
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The lack of deduplication in queries is necessary as the insertion of an identical value at
different nodes is valid. Therefore, the different instances of the value should be treated
separately. Items 2 to 5 may not seem too surprising when the user keeps in mind that
the discrimination tree stores key-value pairs and the terms used as keys disregard the
identity of variables. On the other hand, terms stored as values, generally, will respect
variable identity as it may be relevant in the user’s context. Nevertheless, the user must
be wary to pay attention to these potential pitfalls.

3.3.2 Adapting Path Indexing

Unfortunately, most literature [17, 12, 18] on path indexing only covers the storage of
terms. Reproducing the behaviour of the discrimination tree implementation correctly
and efficiently takes some effort. The queries on a path index rely primarily on the
intersection of sets of terms as every function results in a number of intersections.

We recall that a term is never explicitly stored in path indexing. Instead we represent a
term by a collection of paths, each storing the set of terms containing this path. Naively
replacing this set of terms by a set of values does not work as we can no longer detect
duplicates and handle deletions correctly. For example, a path index storing the key-value
pairs (f(a, ∗), true) and (f(∗, b), true) has the value true stored at the (p, symbolt(p))
pairs (〈〉, f), (〈(f, 1)〉, a) and (〈(f, 2)〉, b), amongst others. When inserting (f(a, b), true),
it is impossible to determine whether this key-value pair has already been inserted before.
Therefore, we must also store the key of a value at each path. Doing so allows us

to reproduce the behaviour of the discrimination tree in the path index. Note that we
need only check if one path, for example the top symbol, stores the same term-value pair
on insertion. If one path does not contain the same key-value pair, no other path will.
Nevertheless, some optimisations can still be made.

3.3.3 Combining Path Indexing and Termtables

A potential problem remains in the above approach. Insertion is fast because we need to
only compare one path to determine whether an identical key-value pair has already been
inserted. Deletion of (t, v), on the other hand, requires us to remove (t, v) from the set at
every path which necessitates repeatedly comparing (t, v) with the other key-value pairs
stored. When we have many terms that share their prefix, this overhead can become
problematic as term comparison of similar terms is relatively slow.

Figure 3.5 shows a path index storing values with three similar terms as keys. For the
sake of simplicity, only the key is shown. Deleting the values at term f(g(a)) requires
two comparisons with each of f(g(b)) and f(g(c)), as they share the constraints (〈〉, f)
and (〈〉, g). If the terms shared more symbols, e.g. in the form of f(a, b, c, g(a, b, c, h(∗))),
this problem would be even more pronounced. Similarly, deleting a single value from a
term associated with multiple values requires repeated comparisons of the values. As
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the comparison for values is supplied by the user, it may be arbitrarily slow, e.g. when
storing large lists.

{f 7→ {f(g(a)), f(g(b)), f(g(c))}}

{g 7→ {f(g(a)), f(g(b)), f(g(c))}}

{a 7→ {f(g(a))}, b 7→ {f(g(b))}, c 7→ {f(g(c))}}

(g, 1)

(f, 1)

Figure 3.5: A path index sharing all paths

We can optimize this challenge: Instead of storing term-value pairs, we generate unique
integer identifiers for each such pair. We then store those identifiers along with their
associated value in the path sets. Doing so allows us to use quick integer comparison
methods and to avoid repeatedly comparing terms and values.

To associate each term-value pair (t, v) with a unique identifier id, we use a termtable.
In the termtable, we use t as the key and store the (id, v) pair. Upon insertion, we first
check the termtable for an identical v stored at t, ignoring the identifier of the value. If
no duplicate is found, we insert (id, v) at key t. Inserting the (id, v) pair into the tree is
straightforward as we already determined that no duplicate exists.
Deletion of (t, v) works similar. By looking up t in the termtable, we obtain a set of

(id, value) pairs. From this list we determine the id of v, removing the (id, v) pair from
the termtable in the process. Traversing the tree is, again, straightforward as we only
need to compare the identifier.

This approach offers another benefit. By using the exact lookup of termtable, we can
improve the duplicate detection to no longer ignore variable identities. In addition, we can
also provide an exact lookup operation (syntactic equality) by using only the associated
termtable. This reduces the overhead in applications where both the queries and an exact
lookup are required. In the current implementation we use a standard termtable and
therefore do not exactly replicate the behaviour of the discrimination tree. Switching to a
variant of the termtable that does not respect identity of variables is fairly trivial.

3.3.4 Further Optimisations

The performance of path indexing relies on fast set operations as every function requires
an intersection of the sets retrieved from the arguments. In the previous section, we
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already reduced the comparison for intersections to integer comparisons. By using ordered
lists, provided by OrdList in Isabelle/ML 4, to implement the sets, we can further speed
up the set operations.
When tasked to compute the intersection of two ordered lists, we need only compare

the first element of each list. If they are different, we can discard the smaller value and
continue. If they are equal, we know that the value is in the intersection and continue
with the next element of the lists.

To improve the cache usage of the queries, we lazily evaluate the set operations. While
traversing the tree, we build a tree of the required set operations, where the leafs represent
the sets of values and internal nodes represent the intersection or union of a number of
children. Once we have traversed the complete path index, we evaluate all the operations
at once. This improves cache usage as the result of one operation can be immediately
used again instead of being evicted from the cache during the traversal of the path index.
This delayed evaluation also simplifies handling the AllTerms case of instances and

unifiables separately. As AllTerms represents a wildcard, we need not replace it by the
set of all indexed term, unless it is the only relevant value. Instead, we simply disregard
this set in the intersection. For example, the intersection of the three sets AllTerms,
{f(a, b), f(x), g(a)} and {g(a), g(f(a, b))} is identical to the intersection of only the latter
two sets.
Figure 3.6 shows a path index storing two terms and the operations tree built by a

instances(f(a, y)) query. As y is a variable, it can be replaced arbitrarily, represented by
AllTerms. We can then simplify the tree by removing AllTerms from the intersection
tree.

Index Term
1 f(a, b)
2 f(x, b)

{f 7→ {1, 2}}

{b 7→ {1, 2}}{a 7→ {1}, ∗ 7→ {2}}

(f, 1) (f, 2)

∩

AllTerms{1}

Figure 3.6: The operations tree for instances of f(a, y)

We attempted to further speed up the set operations by implementing a more efficient
intersection operating on a larger number of children. The first idea was to start with
the smallest set, thereby ensuring that less comparisons are necessary. For example,
when intersecting the sets {1, 2, 3, 4} {2, 3, 4, 5} and {5}, we can start with the last set,
immediately discarding all values from the first set and returning the empty set.
The second idea was to compare the head of each list before moving on to the next

4https://isabelle-dev.sketis.net/source/isabelle/browse/default/src/Pure/General/ord_
list.ML;89cf7c903acad179e40c10f2f6643d3c21448f47
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element instead of intersecting the first two lists completely before moving on to the third
list. For example, intersecting the sets {1, 2, 3, 4} {1, 2, 3, 4, 5} and {5} this way results in
the values 1 through 4 being discarded directly. While they are present in the first two
lists, they are smaller than 5. This is opposed to the naive version, in which we build the
intermediate result {1, 2, 3, 4} before moving on to the last list.

Unfortunately, both ideas proved to be slower. Due to the linked lists used by OrdList
providing no efficient length function, the first idea resulted in significant overhead. The
second idea was, unfortunately, also slower although we could not determine the exact
reason. Perhaps the elements of a list are allocated, at least piecewise, consecutively in
memory. In this case, accessing only one element of each list would be detrimental to an
efficient usage of the cache.
Although we repeatedly store identical values at different locations in the path index,

this does not impact memory consumption. Isabelle/ML is based on the Poly/ML runtime
[19] which provides data sharing. This results in copies of immutable values requiring
almost no additional memory. A related feature is pointer_eq5 which makes use of
the data sharing mechanism and compares immutable values quickly. Unfortunately, we
cannot directly take advantage of this as the user may wish to use a constant function
returning false, i.e. eq(v1,v2) = false, for comparison.

Some of the optimisations proposed in this section have also been described in Section
5.3.1 of [18]. The authors there propose some further optimisations for the computation
of intersections based on database techniques and using references. However, as the usage
of references is discouraged in Isabelle/ML, we did not investigate the latter any further.

5https://polyml.org/documentation/Reference/PolyMLStructure.html#pointerEq
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4 Evaluation

In this chapter, we will discuss our approach for benchmarking the term indices and
evaluate the impact of termtables on the performance of path indexing. In addition, we
compare the performance of path indexing and discrimination tree indexing. Finally, we
discuss potential shortcomings of this evaluation.

The benchmark was run on a computer with a Xeon E5-2690 v3 and 128GB of DDR4
RAM. The repository version1 of Isabelle was used. The distribution used is Ubuntu
18.04.

4.1 Approach

For the experiments, randomly generated term sets are used. During generation, the terms
are represented as a tree with functions as internal nodes with the children representing
the arguments. This is later converted to the applicative style used in Isabelle/ML.
Starting at the root node, a random number of arguments is chosen. We then recursively
descend into each argument, generating another random number of arguments. This
number ranges from 0 to 4. As a result, 20% of the generated nodes are nullary constants
and the remaining 80% are functions with 1 to 4 arguments. In addition, the depth of
the tree is limited to 6, that is, every node on the sixth level is a constant.

Each generated term set has an associated variable frequency f ∈ {0.00, 0.01, 0.03, 0.1}.
f specifies the percentage of symbols s that are selected from the set of variables V. A
function g may also be a variable, which is, strictly speaking, not allowed in first-order
terms. In this case, both term index implementations treat the subtrem as a variable.
Therefore, a higher variable frequency effectively decreases the size of the term.

Example 4.1. Assume f = 0.1 and t = g(s) is a randomly generated term. Then, g and
s each have a 10% chance to be variables. If g is a variable, preorder(t) = 〈∗〉 and the
only path of t is 〈〉 with symbolt(〈〉) = ∗.

To allow symbols to occur multiple times, we select each symbol’s name at random
from a finite set of names N . The cardinality of N is identical to the cardinality of the
term set. For example, in a term set with 10 terms, a total of 10 symbols are available.
This ensures that we maintain a similar frequency of repeated occurences across different

1https://isabelle-dev.sketis.net/source/isabelle/browse/default/
;89cf7c903acad179e40c10f2f6643d3c21448f47
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numbers of terms. Note that each term consists of many symbols, thereby ensuring that
most symbols occur multiple times, either in the same term or across different terms.
While the terms generated in this way do not accurately represent terms of real

applications, they allow us to efficiently stress-test the term indices. As they are randomly
generated we can generate term sets of arbitrary size and test each size multiple times
with different seeds to average the impact of any single term on the performance.

For the benchmarks, we generated term sets with sizes ranging from 10 to 5000. The
smaller sets were tested more often to obtain test runtimes significantly larger than time
measurement errors. For sizes s ≤ 100, we generated 5000 different term sets. For sizes
100 < s < 1000, we generated 500 sets. To restrict the runtime of the benchmarks, only
50 sets were generated for sizes s ≥ 1000.

4.2 Combining Path Indexing and Termtables

In Section 3.3.3, we discussed the repeated comparisons necessary during insertion and
deletion. By introducing unique identifiers for each (term, value) pair and using termtables
we reduced the time spent on comparisons, both for insertion and deletion.

To evaluate the performance of the insert operation for a term set T , we generate a
term set U containing an identical number of new terms, that is, |T | = |U| and T ∩U = ∅.
After creating a term index for T , we start the time measurement and insert every term
u ∈ U into T , effectively doubling the size of T . To evaluate the deletion, we also create a
term index for T but instead delete every term t ∈ T , effectively removing every indexed
term.
While this approach does not accurately evaluate the performance of insertion and

deletion at a given index size, it enables us to measure a long-running operation without
interruptions. Instead of discarding an index after inserting a small number of terms and
reusing the unmodified index, we opt to consecutively insert all terms into the same index.
This ensures that infrequent but expensive operations, like the rebalancing of the 2-3 tree
used by the termtables, are amortised correctly.
Despite this, we encounter some outliers in Figures 4.1 and 4.2 as well as most other

graphs, predominantly at the index sizes 100 and 700. We discuss potential causes in
Section 4.4.
As mentionend in the previous chapter, we require a (term, value) to id mapping to

speed up deletion. Upon deleting a (term, value) pair, we need to remove it from the term
sets of every path of term. Comparing the terms and values repeatedly is prohibitevily
expensive. Therefore, we compare two variants using identifiers.

The first, basic path indexing (Basic PI) uses a linked list to associate each (term, value)
pair with an id. To detect duplicates, we use a variants query on the tree as this avoids
an expensive linear search in the list. For deletion, we cannot avoid searching the list
to retrieve the identifiers that must be deleted. The second variant, path indexing with
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termtables (PI with TT), uses a termtable to store (term, value) 7→ id. We also use this
termtable to detect duplicates and retrieve the identifiers that are deleted.

In Figure 4.1, a log-log plot, we can see a comparison of the respective insertion perfor-
mance. Basic path indexing uses a variants query to detect duplicates of a (term, value)
pair. Note that this traverses all the paths of term and is therefore relatively inefficient.
Despite this, it can be used as a baseline for the path indexing with termtables.

It appears that combining path indexing with termtables does not significantly increase
the runtime of insertion despite inserting every pair into both the termtable and the
path index. While it is faster when compared with basic path indexing, we can expect
that duplication detection using only the top symbol is significantly more performant.
Unfortunately, this is not an option for us as the path index only stores (id, value) pairs
and we require the mapping of (term, value) to id.
For deletion, we can see in Figure 4.2 that using a termtable is consistently and

significantly faster. This aligns with our expectations as the deletion performance was a
major motivation for using termtables.
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Figure 4.1: Insertion Performance
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Figure 4.2: Deletion Performance

4.3 Path Indexing and Discrimination Trees

To test the queries for a term set T , we create both term indices PI and DT for the set T .
We execute one query for each term stored in the index. This ensures that each indexed
term is retrieved at least once. As the combination of path indexing and termtables is
superior for both insertion and deletion and identical for the queries, we will only compare
path indexing with termtables (PI) and discrimination tree indexing (DT).

We use t ∈ T directly as the query term for the variants and generalisations query. For
the instances and unifiables query, we do not use the term t ∈ T directly. Instead, we
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generate a generalisation of t by replacing a randomly chosen constant or function in t by
a variable.

Although we can generate an instance of t to more accurately represent a generalisation
query, we avoid this additional complexity. The performance of the query is nearly
identical for constants and variables in the path index and the discrimination tree index.
Both introduce only a single union when compared to the handling of variables. As the
number of variables is relatively low, we neglect this effect. In contrast, the performance
of the instances and unifiables queries on the discrimination tree index is heavily impacted
by each variable occurence. See Tables 3.1 and 3.2 for reference.

2 4 6 8 10 12 14 16

Unifiables

Instances

Generalisations

Variants

Deletion

Insertion

Execution Time [s]

PI
DT

Figure 4.3: Overview of the Operations

Figure 4.3 shows an overview of the operations for a term set size of 200, summing the
test results of each variable frequency. Of course, this is not representative of differently
sized term indices and is only used to give an intuition for the expected performance.
As we can see, the performance of insertion is inferior as we must execute each value

twice, once into the termtable and once into the path index. On the other hand, deletion
is slightly superior. We also see that path indexing performs significantly better at
retrieving instances and unifiables. However, it performs poorer for generalisation queries.
In addition, the variations across the different types of queries are relatively low, with the
generalisations query taking less than twice as long as the instances query.

This mostly confirms the results of previous studies [17, 12, 16] even though the term
indices considered in this thesis are a generalisation - they store sets of arbitray values
instead of terms. One significant difference are our findings for unifiable queries and is
discussed in Section 4.3.3.
The reason for the low variance in performance of the different queries is found in
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Table 3.1. The variants and instances queries differ only in the handling of a variable.
While variants retrieves the, likely small, term set from this path, the variable is simply
disregarded for instances. As a result, performance of these queries is near identical.

The generalisations query differs from variants by retrieving the union of two path sets
for each constant or function. As each term consists mostly of constants and functions, this
overhead impacts performance significantly. Unifiables suffers from the same performance
problems as generalisations but reduces the number of intersections required due to
variables being treated as a wildcard.

The queries on the discrimination tree index, in contrast, vary greatly in their perfor-
mance. Retrieving variants is extremely fast as we only need to use the preorder traversal
of the query term to reach a single leaf. Generalisations add a union at every constant or
function. As these sets are not used for intersections, these unions do not significantly
impact the performance. As the variants implementation computes the preorder traversal
of the term instead of traversing the term directly, the generalisations query is in fact
faster although this could easily be optimised.

In comparison, the instances and unifiables query are extremely slow. Both rely on the
skip function to compute the set of nodes reached by skipping one subterm. Evaluating
this function is slow as it must both traverse every child of the current node and potentially
skip many nodes if a large term is skipped.

Example 4.2. Consider the set of indexed terms T = {t1 = f(a, x), t2 = f(b, x), t3 =
f(c, x), t4 = f(g(a, b), x)} and the query term u = f(x, y). The instances query will first
lookup f and reach node N = slp(root, f). As the next symbol of preorder(u) is ∗, we
compute skip(N). As every indexed term shares the prefix f with u, we retrieve the
set of nodes {slp(N, a), slp(N, b), slp(N, c), slp(slp(slp(N, g), a), b)}. Each of these nodes
is evaluated recursively. If more terms shared some prefix with u or the subterms were
larger, this evaluation will be even slower.

4.3.1 Variants

To evaluate the performance of the variants query, we test differently sized sets of terms.
As variables in the term are handled identically to constants, the variable frequency of the
terms is not plotted separately. We confirmed that the variable frequency had practically
no impact. We average the tests of a given size with the different frequencies to reduce
noise.
Figure 4.4 shows the variants query of the term indices over differently sized sets of

indexed terms. Note that we run one query for each term in the set. Therefore, we
expect to see a linear plot with a slope of 1 if the query performance of a term index is
independent of the number of indexed terms. We also show the performance of the exact
lookup provided by the termtables (TT).
In theory, only the discrimination tree index should handle the variants query as fast

for large number of indexed terms as the query only relies on the preorder traversal of
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Figure 4.4: Variants Query

the query term and therefore does not interact with terms unrelated to it. The path
index, on the other hand, relies on the intersection of term sets that may contain many
unrelated terms and the termtables must traverse a larger 2-3 tree to reach the desired
leaf. In practice, these deficits do not meaningfully affect the performance for realistically
sized term indices.

Note that the variants query of path indexing can be supplemented by the exact lookup
provided by the termtables. If the exact lookup of terms is sufficient, or even required,
this provides a significantly faster alternative. Adapating the termtables to ignore the
variable identity should also retain almost identical performance characterstics. However,
due to a lack of time, we did not verify this.

4.3.2 Instances and Generalisations

As already shown in the overview, the performance difference of the queries for instances
and generalisations are drastic for the indices. Figure 4.5 shows that the path index
dominates the discrimination tree index for all sizes when querying for instances, although
this difference is more pronounced for larger indices. Similiarly, Figure 4.6 shows that the
discrimination tree index is consistently and significantly faster than the path index for
generalisations.

4.3.3 Unifiables

The unifiables query is likely one of the most important queries due to the wide range of
applications. It is also the query in which the term indices differ the least in performance.
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Figure 4.6: Generalisations Query

We can see in Figure 4.7 that path indexing handles increased index sizes well. While the
additional terms increase the average size of the term sets stored at the paths located
close to the root, the path lists likely remain very small as it is unlikely for two large
terms to share not only a constant or variable, but also all the functions leading to this
symbol.
For discrimination tree indexing, on the other hand, every term sharing a prefix with

the query term potentially leads to additional recursive calls due to the skip function
returning more nodes. Note that, due to the double-logarithmic scale, the performance
difference is more drastic than it appears. Increasing the number of indexed terms from
3000 to 5000, less than doubling, leads to an almost four times longer evaluation for the
unifiables query on the discrimination tree.
Despite this, the discrimination tree index is comparable, or even faster, at smaller

index sizes. Comparing the performance with differing variable frequencies at a fixed
size of 40, as can be seen in Figure 4.8, shows that, at lower variable frequencies, the
performance is comparable.
Due to the variables replacing not only constants but also functions and both indices

disregarding the arguments of a variable, increasing the variable frequency effectively
decreases the size of the terms. We therefore expect both term indices to improve with
increasing variable frequencies. As a result, the absolute impact of the variable frequency
can not be accurately measured. Nevertheless, the relative performance gain through
higher variable frequencies can be measured.
Path indexing, which benefits not only from the decreased size but also from the

occurence of variables by treating them as wildcards, significantly improves. The dis-
crimination tree, on the other hand, benefits only from the decreased term size but
requires additional skip evaluations. Therefore, it improves relatively slowly and is only
comparable at lower frequencies.
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Although previous results are mixed, discrimination trees are found to be either
comparable or superior. While we also found them to be comparable at small sizes, path
indexing is significantly faster when 200 or more terms are indexed. This may be a result
of the applicative style disrupting the performance of discrimination trees or the random
generation of terms not accurately representing the terms of real applications and requires
further investigation.
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Figure 4.8: Unifiables Query at 40 Terms

4.3.4 Modifying Operations

While the query performance is most important for a term index, the time spent on
creation and modification of term indices may be significant if they are short-lived indices.
The performance of modifying the set of indexed terms is comparable for both indices and
the difference should not be a deciding factor unless an index storing multiple thousand
terms must be modified frequently.
Figure 4.9 shows the insertion time for different term sizes. Again, we average the

results from sets of different variable frequencies as the impact of variables is neglegible.
While path indexing performs similarly well for smaller indices, it scales worse than
discrimination tree indexing. This is expected as its duplicate detection is more expensive
than it is for the discrimination tree. In addition, we must insert each term-value pair
twice, once into the termtable and once into the tree.

The difference is even more pronounced for deletion, as can be seen in Figure 4.10. At
small sizes, the term sets are generally small, even for the top symbol. As the number
of indexed terms increases, so does the average size of the term sets. Despite the fast
comparison with identifiers, this deletion must be repeated for every single path of a term.
Naturally, deleting the value from potentially hundreds of increasingly large term sets
increases deletion time significantly.
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Figure 4.10: Deletion Performance

4.4 Shortcomings

In the evaluation of the term indices, two problems became apparent. Firstly, the term
generators do not accurately represent terms of real applications. Therefore, the results
shown here must be taken with a grain of salt and should be compared to tests on real
data for contexts that rely on high performance.

Secondly, the results from the tests show some significant and consistent outliers. These
occur almost exclusively at the tests with an index size of 100 and 700. We recall from
Section 4.1 that we repeat the smaller sized tests more often to get better test results.
For sizes up to 100, we repeat the tests 5000 times and for sizes up to 700 we repeat them
500 times. These values were chosen in pretests to limit the runtime of the benchmark
while still testing each size an appropriate number of times.

As a result, we store a total of 500000 terms for size 100 and 350000 terms for size 700
in memory during a single test run. The 5000 repetitions for size 70 also result in 350000
terms. Each of these three tests contain more terms than the other tests. The outliers
occur consistently at sizes 100 and 700 but, surprisingly, size 70 is unaffected. This may
be related to the overhead of the term indices.

Therefore, the first assumed cause is the exhaustion of memory as the swapping of any,
even unrelated, memory will significantly slow down the benchmark. We determined that
this is not the cause as the tests were run on a machine with 128 gigabytes of memory
and pretests showed that memory consumption should not exceed 10 gigabytes, a fraction
of the available memory.

Nevertheless, as the outliers only appear at these specific sizes, a memory related cause
is likely. As these issues are highly unlikely to be caused on the level of the operating
system, the next higher level may be responsible. The Isabelle/ML code is run using the
Poly/ML runtime. As the Poly/ML runtime has many advanced features, like garbage
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collection, a data sharing mechanism for immutable values and implicit parallelism, it
may be the culprit. We attempted to minimise these issues by triggering a full garbage
collection between each test to no avail.
A clue, hinting at issues related to the memory management, is the appearance of

outliers primarily for path indexing. The discrimination tree requires no set operations
and therefore does not allocate as many intermediate results as path indexing. By building
a tree of the required set operations and evaluating it, the runtime may be forced to run
a garbage collection before the test is finished.

We can also observe larger issues for the insertion test, seen in Figure 4.9. At a size of
100, the path index takes almost ten times as long as we would expect. Similarly, the
discrimination tree is also affected at a size of 700. The lower insertion time for a size of
5000 when compared to a size of 3000 is also unexpected as they are both run for the
same number of times and should not be significantly affected by chance as all the tests
were run with 50 different seeds.

Although we were not able to track down the exact reason for the outliers at the time
of writing, we are confident that they are unrelated to the effectiveness of the term indices
in general: our results coincide with those of previous studies [17, 12, 16] and tests with
sizes close to those of the outliers show results as expected.
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5.1 Related Work

Our work was inspired by the work of Stickel [17] who introduced path indexing as an
alternative to discrimination trees. In their work, they also showed that path indexing
is a promising competitor but that each technique has advantages and drawbacks. This
observation was further examined by McCune [12]. By considering various optimisations
for both techniques, they arrived at a more detailed conclusion. A study of these indices,
in addition to abstraction trees and substitution trees was also conducted in [16].

Although we embedded first-order path indexing in the higher-order context of Isabelle
and generalised the index to store arbitrary values instead of terms, the results we
obtained generally agree with said literature. The consensus is that path indexing is
superior to the variant of discrimination trees used in Isabelle for insertion, deletion and
instances retrieval. On the other hand, discrimination trees dominate for variants and
generalisations queries. Besides the insertion and deletion operations, which are slightly
slower due to the combination with termtables, the results agree with our findings.
One significant difference to previous results are our findings for unifiable queries.

Although their results are mixed, discrimination trees are found to be either comparable
or superior. While we also found them to be comparable at small sizes, path indexing
is significantly faster when 200 or more terms are indexed. This may be a result of
the applicative style disrupting the performance of discrimination trees or the random
generation of terms not accurately representing the terms of real applications and requires
further investigation.

5.2 Summary and Future Work

We presented both path indexing and discrimination tree indexing and described the
process of adapting the path index to Isabelle/ML, including the embedding of first-
order terms in higher-order terms and the generalisation to indexing arbitrary values.
In addition, we also considered optimisations to speed up the set operations, whose
performance is crucial.
By combining path indexing with termtables (balanced 2-3 trees) and using integer

identifiers in place of terms for lookup comparisons in the path index, we not only sped
up all set operations but also supplemented the slow variants query of the path index with
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the exact lookup of the termtable. This is an opportunity to investigate other potential
combinations of term indices. In addition, the use of a termtable, that distinguishes
variables, enables the implementation of an exact duplicate detection, negating some of
the caveats mentionend in Section 3.3.1.

Although current term indexing techniques in Isabelle/ML are able to deal with higher-
order terms, they are optimised for the first-order case. Generalising term indices to
handle higher-order terms correctly is, unfortunately, highly complicated as some queries
may no longer be decidable [20]. Nevertheless, overapproximating term indices have been
investigated and offer acceptable performance [21, 22]. Implementing such indices may
prove to be challenging but also highly desirable.
While implementing path indexing, we took care to unify the interface with that of

discrimination trees. This allows a user of either structure to simply swap the used term
index for the other one. Moreover, this clears the way to easily add additional term indices
such as substitution trees, which offer better performance for queries while compromising
in sertion speed and memory requirements [16].
Lastly, we evaluated the performance of our implementation of path indexing in

comparison to the existing implementation of discrimination trees in Isabelle/ML. While
our evaluation largely reflects the results of the literature, they must be taken with a
grain of salt as the generated terms are, after all, artificial and do not accurately represent
real applications. Evaluating their performance on actual theories in Isabelle should be,
thanks to the interface, relatively simple once proof methods are adapted to the minor
changes in the interface.
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