Functional Data Structures Exercise Sheet 4

Exercise 4.1 List Elements in Interval

Write a function to in-order list all elements of a BST in a given interval. I.e. *in_range* $t \ u \ v$ shall list all elements x with $u \le x \le v$. Write a recursive function that does not descend into subtrees that definitely contain no elements in the given range.

fun *in_range* :: "*'a::linorder tree* \Rightarrow *'a* \Rightarrow *'a bist*"

Show that you list the right set of elements

lemma "bst $t \Longrightarrow$ set (in_range $t \ u \ v$) = { $x \in set_tree \ t. \ u \le x \land x \le v$ }"

Show that your list is actually in-order

lemma "bst $t \Longrightarrow in_range t \ u \ v = filter (\lambda x. \ u \le x \land x \le v)$ (inorder t)"

Exercise 4.2 Fist Isar Steps

Using Isar, show the following theorem over natural numbers:

theorem assumes " $x \ge (1 :: nat)$ " shows " $(x + x^2)^2 \le 4 * x^4$ "

Hint: When phrasing intermediate goals, check your types. Use *sledgehammer* to fill in simple proof steps.

Exercise 4.3 Enumeration of Trees

Write a function that generates the set of all trees up to a given height. Show that only trees up to the specified height are contained.

fun enum :: "nat \Rightarrow unit tree set" lemma enum_sound: "t \in enum n \Longrightarrow height t \leq n" (Time permitting) Show the other direction, i.e. that all trees of the specified height are contained.

lemma enum_complete: "height $t \leq n \implies t \in$ enum n"

lemma enum_correct: "enum $h = \{t. height t \le h\}$ " by (auto simp: enum_complete enum_sound)

Homework 4 Popularity Annotated Trees

Submission until Thursday, May 26, 23:59pm.

We define *ptrees*, which are trees that store the popularity of each element, i.e. the number of times it was searched for, as (nat * 'a) tree.

Define the set of elements of that tree as a recursive function, then show it correct w.r.t. to the normal *set_tree* (' is the set *image*):

fun set_ptree :: "('a::linorder) ptree \Rightarrow 'a set" lemma set_ptree: "set_ptree t = snd ' set_tree t"

Define the binary search tree predicate as well as insert function for those trees (they should be quite similar to the formulations for normal trees).

If a node is already present, overwrite the old popularity value.

fun pbst :: "'a::linorder ptree \Rightarrow bool" **fun** pins :: "(nat * 'a::linorder) \Rightarrow 'a ptree \Rightarrow 'a ptree"

Show the most interesting property, namely that insert preserves the invariant:

lemma pins_invar: "pbst $t \Longrightarrow pbst$ (pins x t)"

Now define the *isin* function, which should return the updated *ptree* and the number of times it was searched for (i.e., zero for elements not in the tree and at least one for everything in the tree):

fun pisin :: "'a::linorder \Rightarrow 'a ptree \Rightarrow ('a ptree * nat)"

Show the correctness of your function:

lemma $pisin_set$: " $pbst t \Longrightarrow set_ptree (fst (pisin x t)) = set_ptree t$ " **lemma** $pisin_invar$: " $pbst t \Longrightarrow pbst (fst (pisin x t))$ " **lemma** $pisin_inc$: " $pbst t \Longrightarrow (n,x) \in set_tree t \Longrightarrow (Suc n,x) \in set_tree (fst (pisin x t))$ "

Knowing the popularity of element queries, we can re-order the tree from time to time to optimize query time (assuming that the distribution of searched nodes stays the same). Implement such a re-ordering — it does not need to be optimal, but the most popular element should be at the root, and the least popular elements should be on the bottom.

Hint: Sorting might be useful. Have a look at the pre-defined *sort* function and its implementation.

term "sort"

definition reorder :: "('a::linorder) ptree \Rightarrow 'a ptree"

Show that your re-ordering preserves the invariant:

theorem reorder_pbst: "pbst $t \Longrightarrow pbst$ (reorder t)"

Homework 4 Popularity Annotated Trees (II)

Submission until Thursday, May 26, 23:59pm.

(This is a bonus exercise worth 4 points.)

Show that in the *reorder* function, the set of elements stays unchanged. Start by proving that the *set_ptree* stays unchanged — this should give you an idea how the proof should work.

theorem reorder_pset: "pbst $t \Longrightarrow set_ptree$ (reorder t) = set_ptree t" **theorem** reorder_set: "pbst $t \Longrightarrow set_tree$ (reorder t) = set_tree t"