
Technische Universität München SS 2022
Institut für Informatik 3. 6. 2022

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 6

Exercise 6.1 Complexity of Naive Reverse

Show that the naive reverse function needs quadratically many Cons operations in the
length of the input list. (Note that [x] is syntax sugar for Cons x []!)
thm append.simps

fun reverse where
“reverse [] = []”
| “reverse (x#xs) = reverse xs @ [x]”

Exercise 6.2 Selection Sort

Selection sort (also known as MinSort) sorts a list by repeatedly moving the smallest
element of the remaining list to the front.

Define a function that takes a non-empty list, and returns the minimum element and
the list with the minimum element removed
fun find_min :: “ ′a::linorder list ⇒ ′a × ′a list”

Show that find_min returns the minimum element
lemma find_min_min:

assumes “find_min xs = (y,ys)”
and “xs 6=[]”

shows “a∈set xs =⇒ y ≤ a”

Show that find_min returns exactly the elements from the list
lemma find_min_mset:

assumes “find_min (x#xs) = (y,ys)”
shows “mset (x#xs) = (mset (y#ys))”

Show the following lemma on the length of the returned list, and register it as [termination_simp].
The function package will require this to show termination of the selection sort function.

1



lemma find_min_snd_len_decr [termination_simp]:
assumes “(y,ys) = find_min (x#xs)”
shows “length ys < Suc (length xs)”

Selection sort can now be written as follows:
fun sel_sort where

“sel_sort [] = []”
| “sel_sort xs = (let (y,ys) = find_min xs in y#sel_sort ys)”

Show that selection sort is a sorting algorithm:
lemma sel_sort_mset[simp]: “mset (sel_sort xs) = mset xs”

lemma “sorted (sel_sort xs)”

Homework 6.1 Bubble Sort

Submission until Thursday, June 9, 23:59pm.
Implement a bubble-sort, i.e. a sorting algorithm, where elements are bubbled up for
multiple iterations until the list is sorted. Start by defining the function bubble, which
should traverse the list once and swap adjacent elements if their order is wrong:
fun bubble :: “ ′a ::linorder list ⇒ ′a list”

The sorting algorithm then executes the bubble function length numer of times:
fun bsort_aux :: “nat ⇒ ′a::linorder list ⇒ ′a list” where

“bsort_aux 0 xs = xs” |
“bsort_aux (Suc n) xs = bsort_aux n (bubble xs)”

definition bsort :: “ ′a::linorder list ⇒ ′a list” where
“bsort xs = bsort_aux (length xs) xs”

Warmup: Show that the mset stays the same. You’ll need similar lemmas about bsort_aux
and bsort.

theorem bsort_mset: “mset (bsort xs) = mset xs”

The easy part: Define the canonical timing function for bsort and the involved functions.
Assume that length has a constant cost and [] a cost of zero.
fun T_bubble :: “ ′a::linorder list ⇒ nat”
definition T_bsort :: “ ′a::linorder list ⇒ nat”

Show that the run-time is quadratic:

2



theorem T_bsort: “∃ c d. T_bsort xs ≤ c ∗ (length xs)^2 + d”

The difficult part: Show that the result is sorted. For that, define a measure function
that decreases in every bubble invocation (if the list is unsorted - otherwise it should at
least not increase), and reaches zero for a sorted list. Prove those properties!
Hint: The structure of the measure function should be similar to the sorted_wrt function.
fun measure :: “ ′a::linorder list ⇒ nat”
lemma measure_sorted_0: “sorted xs ←→ measure xs = 0”
lemma measure_le[simp]: “measure (bubble xs) ≤ measure xs”
lemma measure_dec[simp]: “¬sorted xs =⇒ measure (bubble xs) < measure xs”

With those properties, show that the list is sorted. The less_induct principle may be
useful:
(
∧

x. (
∧

y. y < x =⇒ P y) =⇒ P x) =⇒ P a

lemma bsort_sorted: “sorted (bsort xs)”

3


