Functional Data Structures

Exercise Sheet 6

Exercise 6.1 Complexity of Naive Reverse

Show that the naive reverse function needs quadratically many *Cons* operations in the length of the input list. (Note that [x] is syntax sugar for *Cons* x []!)

thm append.simps

fun reverse where
 "reverse [] = [] "
| "reverse (x#xs) = reverse xs @ [x] "

Exercise 6.2 Selection Sort

Selection sort (also known as MinSort) sorts a list by repeatedly moving the smallest element of the remaining list to the front.

Define a function that takes a non-empty list, and returns the minimum element and the list with the minimum element removed

fun find_min :: "'a::linorder list \Rightarrow 'a \times 'a list"

Show that *find_min* returns the minimum element

lemma find_min_min: assumes "find_min xs = (y,ys)" and " $xs \neq []$ " shows " $a \in set \ xs \implies y \leq a$ "

Show that *find_min* returns exactly the elements from the list

lemma find_min_mset: assumes "find_min (x#xs) = (y,ys)" shows "mset (x#xs) = (mset (y#ys))"

Show the following lemma on the length of the returned list, and register it as [termination_simp]. The function package will require this to show termination of the selection sort function.

lemma find_min_snd_len_decr[termination_simp]: **assumes** " $(y,ys) = find_min (x \# xs)$ " **shows** "length ys < Suc (length xs)"

Selection sort can now be written as follows:

fun sel_sort **where** "sel_sort [] = []" | "sel_sort $xs = (let (y,ys) = find_min xs in y#sel_sort ys)"$

Show that selection sort is a sorting algorithm:

lemma $sel_sort_mset[simp]$: "mset ($sel_sort xs$) = mset xs"

lemma "sorted (sel_sort xs)"

Homework 6.1 Bubble Sort

Submission until Thursday, June 9, 23:59pm.

Implement a bubble-sort, i.e. a sorting algorithm, where elements are bubbled up for multiple iterations until the list is sorted. Start by defining the function *bubble*, which should traverse the list once and swap adjacent elements if their order is wrong:

fun bubble :: "'a ::linorder list \Rightarrow 'a list"

The sorting algorithm then executes the *bubble* function *length* numer of times:

fun $bsort_aux :: "nat \Rightarrow 'a::linorder list \Rightarrow 'a list" where$ $"bsort_aux 0 xs = xs" |$ $"bsort_aux (Suc n) xs = bsort_aux n (bubble xs)"$

definition bsort :: "'a::linorder list \Rightarrow 'a list" where "bsort $xs = bsort_aux$ (length xs) xs"

Warmup: Show that the *mset* stays the same. You'll need similar lemmas about *bsort_aux* and *bsort*.

theorem $bsort_mset$: "mset (bsort xs) = mset xs"

The easy part: Define the canonical timing function for *bsort* and the involved functions. Assume that *length* has a constant cost and [] a cost of zero.

fun $T_bubble :: "'a::linorder list <math>\Rightarrow$ nat" **definition** $T_bsort :: "'a::linorder list <math>\Rightarrow$ nat"

Show that the run-time is quadratic:

theorem T_bsort : " $\exists c \ d. \ T_bsort \ xs \le c \ast (length \ xs)^2 + d$ "

The difficult part: Show that the result is sorted. For that, define a measure function that decreases in every *bubble* invocation (if the list is unsorted - otherwise it should at least not increase), and reaches zero for a sorted list. Prove those properties!

Hint: The structure of the measure function should be similar to the *sorted_wrt* function.

fun measure :: "'a::linorder list \Rightarrow nat" lemma measure_sorted_0: "sorted $xs \leftrightarrow$ measure xs = 0" lemma measure_le[simp]: "measure (bubble xs) \leq measure xs" lemma measure_dec[simp]: " \neg sorted $xs \Rightarrow$ measure (bubble xs) < measure xs"

With those properties, show that the list is sorted. The *less_induct* principle may be useful:

 $(\bigwedge x. \ (\bigwedge y. \ y < x \Longrightarrow P \ y) \Longrightarrow P \ x) \Longrightarrow P \ a$

lemma bsort_sorted: "sorted (bsort xs)"