
Technische Universität München SS 2022
Institut für Informatik 24. 6. 2022

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 8

Exercise 8.1 Joining 2-3-Trees

Implement and prove correct a function to combine two 2-3-trees of equal height, such
that the inorder traversal of the resulting tree is the concatenation of the inorder traversal
of the arguments, and the height of the result is either the height of the arguments, or
has increased by one. Use ′a upI to return the result, similar to Tree23_Set.ins:
fun join :: “ ′a tree23 ⇒ ′a tree23 ⇒ ′a upI”

lemma join_inorder :
assumes “height t1 = height t2”

and “complete t1” “complete t2”
shows “inorder (treeI (join t1 t2)) = (inorder t1 @ inorder t2)”

lemma join_complete:
assumes “height t1 = height t2”

and “complete t1” “complete t2”
shows “complete (treeI (join t1 t2)) ∧ hI (join t1 t2) = height t2”

Hints:

• Try to use automatic case splitting (auto split: . . .) instead of explicit case splitting
via Isar (There will be dozens of cases).

• To find bugs in your join function, or isolate the case where your automatic proof
does not (yet) work, use Isar to perform the induction proof case by case.

Exercise 8.2 Bounding the Size of 2-3-Trees

Show that for 2-3-trees, we have:

log3 (s(t) + 1) ≤ h(t) ≤ log2 (s(t) + 1)

Hint: It helps to first raise the two sides of the inequation to the 2nd/3rd power. Use
sledgehammer and find-theorems to search for the appropriate lemmas.
lemma height_bound_upper : “complete t =⇒ height t ≤ log 2 (size t + 1)”

1

lemma height_bound_lower :
assumes “complete t”
shows “log 3 (size t + 1) ≤ height t”

Homework 8.1 Deletion from a disjoint interval tree

Submission until Thursday, June 30, 23:59pm.
An interval tree is a tree whose nodes each contain an interval of elements from an
ordered type. We can define its type as follows:
datatype ′a itree = iLeaf | iNode (′a itree) (′a × ′a) (′a itree)
The following are two useful functions for interval trees: one returning the set of intervals
in the tree, and another returning the set of elements in the tree.
set_itree2 iLeaf = {}
set_itree2 (iNode l (low, high) r) = {low..high} ∪ (set_itree2 l ∪ set_itree2 r)
set_itree3 iLeaf = {}
set_itree3 (iNode l (low, high) r) = {(low, high)} ∪ (set_itree3 l ∪ set_itree3 r)
An ordered disjoint interval tree is an interval tree such that:

• The lower end of an interval in a node is strictly greater than the higher end of
every interval in the left subtree.

• The higher end of an interval in a node is strictly smaller than the lower end in
every interval in the right subtree.

• The interval in every node has a lower end that is smaller than or equal than its
upper end.

Recursively define an invariant for an interval tree that formalises the above conditions.
fun ibst :: “ ′a::linorder itree ⇒ bool”

Define and verify a delete function for interval trees. That function should: i) only take
an element (i.e. not an interval) and delete it from the tree, ii) exploit the fact that the
tree is ordered, and iii) be implemented using an appropriate join function for interval
trees.

fun delete :: “int ⇒ int itree ⇒ int itree”

Hint: this function has to deal with three cases.

• if the element is equal to the two ends of an interval, in which case the interval
should be completely removed from the tree,

• if the element is equal to one of the ends of an interval, in which case the interval
has to be appropriately shrinked, and

2

• if the element lies with an interval, in which case the interval as to be split into
two. One way to deal with that situation is to let the left subinterval inherit the
position of the original interval, and position the right subinterval to be the left
most leaf in the right subtree.

value “delete 3 (iNode (iNode (iNode iLeaf (Interval 0 0) iLeaf) (Interval 1 1) (iNode iLeaf
(Interval 2 4) iLeaf)) (Interval (5::nat) 6) (iLeaf))

= iNode (iNode (iNode iLeaf (Interval 0 0) iLeaf) (Interval 1 1) (iNode iLeaf (Interval 2
2) (iNode iLeaf (Interval 4 4) iLeaf))) (Interval 5 6) iLeaf”

Prove that the function removes the correct element from the tree.
lemma delete_set_minus: “ibst t =⇒ set_itree2 (delete x t) = (set_itree2 t) − {x}”

Prove that the resulting interval tree conforms to the invariant. Hint: you might want
to define a function that returns an list of intervals in an interval tree and a predicate
characterising the sortedness of that list. Proving that delete preserves the invariant
should reduce to arguing about the sortedness of this list.

lemma ibst_delete: “ibst t =⇒ ibst (delete x t)”

Homework 8.2 Insertion 1-2 Trees

Submission until Thursday, June 30, 23:59pm.
Similar to a 2-3 tree, we can construct search trees that consist of 1- and and 2-nodes and
maintains completeness. To achieve a logarithmic height, 1-nodes may not be chained,
i.e. the full invariant is::
invar 〈〉 = True
invar 〈t〉 = (case t of 〈〉 ⇒ True | 〈x〉 ⇒ False | 〈l, x, r〉 ⇒ height l = height r ∧ invar
l ∧ invar r)
invar 〈l, uu, r〉 = (height l = height r ∧ invar l ∧ invar r)
Define an insert function, similar to 2-3 trees (start by copying that function). Instead
of the three-node constructor, use an auxiliary merge function, which may be recursive
again:
fun merge :: “ ′a tree12 ⇒ ′a ⇒ ′a tree12 ⇒ ′a ⇒ ′a tree12 ⇒ ′a upI”
fun ins :: “ ′a::linorder ⇒ ′a tree12 ⇒ ′a upI”

Show that merge retains the inorder:
lemma inorder_merge[simp]:

“inorder(treeI (merge l a m b r)) = (inorder l) @ a # (inorder m) @ b # (inorder r)”

3

Homework 8.3 Insertion 1-2 Trees II (Bonus))

Submission until Thursday, June 30, 23:59pm.
This is a bonus exercise worth 4 points.
Show that insert retains the invariant:

theorem invar_ins: “invar t =⇒ invar (treeI (ins x t)) ∧ hI (ins x t) = height t”

4

