Functional Data Structures Exercise Sheet 9

Exercise 9.1 Joining 2-3-Trees (II)

Write a join function for complete 2-3-trees of arbitrary height: The function shall take two 2-3-trees l and r and an element x, and return a new 2-3-tree with the inorder-traversal l x r.

Write two functions, one for the height of l being greater, the other for the height of r being greater. The result should also be a complete tree, with height equal to the greater height of l and r.

height r greater:

fun joinL :: "'a tree23 \Rightarrow 'a \Rightarrow 'a tree23 \Rightarrow 'a upI" **lemma** complete_joinL: "[[complete l; complete r; height l < height r]] \Rightarrow complete (treeI (joinL l x r)) \land hI (joinL l x r) = height r"

lemma inorder_joinL: "[complete l; complete r; height l < height r]] \implies inorder (treeI (joinL l x r)) = inorder l @x # inorder r"

height l greater:

fun $joinR :: "'a tree23 \Rightarrow 'a \Rightarrow 'a tree23 \Rightarrow 'a upI"$ **lemma** $complete_joinR: "[[complete l; complete r; height l > height r]] <math>\Longrightarrow$ $complete (treeI (joinR l x r)) \land hI(joinR l x r) = height l"$

lemma inorder_joinR: "[[complete l; complete r; height l > height r]] \implies inorder (treeI (joinR l x r)) = inorder l @x # inorder r"

Combine both functions.

fun join :: "'a tree23 \Rightarrow 'a \Rightarrow 'a tree23 \Rightarrow 'a tree23" **lemma** "[[complete l; complete r]] \Rightarrow complete (join l x r)"

lemma "[[complete l; complete r]] \implies inorder (join l x r) = inorder l @x # inorder r"

Exercise 9.2 Union Function on Binary Tries

Define a function to merge two tries and show its correctness:

hide_const Tree23_Set.isin

fun union :: "trie \Rightarrow trie \Rightarrow trie" lemma "isin (union a b) x = Tries_Binary.isin a $x \lor$ Tries_Binary.isin b x"

Homework 9.1 Balanced Tree to RBT

Submission until Thursday, 7. 7. 2022, 23:59pm.

A tree is balanced, if its minimum height and its height differ by at most 1.

The following function paints a balanced tree to form a valid red-black tree with the same structure. The task of this homework is to prove this!

```
fun mk_rbt :: "'a tree \<Rightarrow> 'a rbt" where
"mk_rbt Leaf = Leaf"
| "mk_rbt (Node l a r) = (let
  l'=mk_rbt l;
  r'=mk_rbt r
  in
      if min_height l > min_height r then
      B (paint Red l') a r'
      else if min_height l < min_height r then
      B l' a r'
  )"</pre>
```

Warmup

Show that the left and right subtree of a balanced tree are, again, balanced lemma balanced_subt: "balanced (Node l a r) \implies balanced l \land balanced r"

Show the following alternative characterization of balanced. Hint: Auxiliary lemma relating *height t* and *Defs.min_height t*

lemma balanced_alt: "balanced $t \leftrightarrow$ height $t = min_height \ t \lor height \ t = min_height \ t + 1$ "

The Easy Parts

Show that mk_rbt does not change the inorder-traversal: lemma $mk_rbt_inorder$: "inorder $(mk_rbt t) = Tree.inorder t$ " Show that the color of the root node is always black lemma mk_rbt_color : "color $(mk_rbt t) = Black$ "

Medium Complex Parts

Show that the black-height of the returned tree is the minimum height of the argument tree.

Hint: Use Isar to have better control when to unfold with *balanced_alt*, and when to use *balanced_subt* (e.g. to discharge the premises of the IH)

lemma $mk_rbt_bheight$: "balanced $t \Longrightarrow bheight$ (mk_rbt t) = min_height t"

Show that the returned tree satisfies the height invariant.

lemma mk_rbt_invh : "balanced $t \implies invh (mk_rbt t)$ "

The Hard Part (3 Bonus Points)

For three bonus points, show that the returned tree satisfies the color invariant.

Warning: This requires careful case splitting, via a clever combination of automation and manual proof (Isar, aux-lemmas), in order to deal with the multiple cases without a combinatorial explosion of the proofs.

lemma mk_rbt_invc : "balanced $t \implies invc (mk_rbt t)$ "

Homework 9.2 Linear-Time Repainting

Submission until Thursday, 7. 7. 2022, 23:59pm.

Write a linear-time version of mk_rbt , and show that it behaves like mk_rbt .

Idea: Compute the min-height during the same recursion as you build the tree.

Note: No formal complexity proof required.

fun mk_rbt' :: "'a tree \Rightarrow 'a $rbt \times nat$ "

lemma $mk_rbt'_refine:$ "fst $(mk_rbt' t) = mk_rbt t$ "