
Technische Universität München SS 2022
Institut für Informatik 1. 7. 2022

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 9

Exercise 9.1 Joining 2-3-Trees (II)

Write a join function for complete 2-3-trees of arbitrary height: The function shall take
two 2-3-trees l and r and an element x, and return a new 2-3-tree with the inorder-
traversal l x r.
Write two functions, one for the height of l being greater, the other for the height of r
being greater. The result should also be a complete tree, with height equal to the greater
height of l and r.

height r greater:
fun joinL :: “ ′a tree23 ⇒ ′a ⇒ ′a tree23 ⇒ ′a upI”
lemma complete_joinL: “[[complete l; complete r ; height l < height r]]
=⇒ complete (treeI (joinL l x r)) ∧ hI (joinL l x r) = height r”

lemma inorder_joinL: “[[complete l; complete r ; height l < height r]]
=⇒ inorder (treeI (joinL l x r)) = inorder l @x # inorder r”

height l greater:
fun joinR :: “ ′a tree23 ⇒ ′a ⇒ ′a tree23 ⇒ ′a upI”
lemma complete_joinR: “[[complete l; complete r ; height l > height r]] =⇒

complete (treeI (joinR l x r)) ∧ hI (joinR l x r) = height l”

lemma inorder_joinR: “[[complete l; complete r ; height l > height r]] =⇒ inorder (treeI (joinR
l x r)) = inorder l @x # inorder r”

Combine both functions.
fun join :: “ ′a tree23 ⇒ ′a ⇒ ′a tree23 ⇒ ′a tree23”
lemma “[[complete l; complete r]] =⇒ complete (join l x r)”

lemma “[[complete l; complete r]] =⇒ inorder (join l x r) = inorder l @x # inorder r”

1

Exercise 9.2 Union Function on Binary Tries

Define a function to merge two tries and show its correctness:
hide_const Tree23_Set.isin

fun union :: “trie ⇒ trie ⇒ trie”
lemma “isin (union a b) x = Tries_Binary.isin a x ∨ Tries_Binary.isin b x”

Homework 9.1 Balanced Tree to RBT

Submission until Thursday, 7. 7. 2022, 23:59pm.
A tree is balanced, if its minimum height and its height differ by at most 1.
The following function paints a balanced tree to form a valid red-black tree with the
same structure. The task of this homework is to prove this!

fun mk_rbt :: "'a tree \<Rightarrow> 'a rbt" where
"mk_rbt Leaf = Leaf"

| "mk_rbt (Node l a r) = (let
l'=mk_rbt l;
r'=mk_rbt r

in
if min_height l > min_height r then

B (paint Red l') a r'
else if min_height l < min_height r then

B l' a (paint Red r')
else

B l' a r'
)"

Warmup

Show that the left and right subtree of a balanced tree are, again, balanced
lemma balanced_subt: “balanced (Node l a r) =⇒ balanced l ∧ balanced r”

Show the following alternative characterization of balanced.
Hint: Auxiliary lemma relating height t and Defs.min_height t

lemma balanced_alt:
“balanced t ←→ height t = min_height t ∨ height t = min_height t + 1”

2

The Easy Parts

Show that mk_rbt does not change the inorder-traversal:
lemma mk_rbt_inorder : “inorder (mk_rbt t) = Tree.inorder t”

Show that the color of the root node is always black
lemma mk_rbt_color : “color (mk_rbt t) = Black”

Medium Complex Parts

Show that the black-height of the returned tree is the minimum height of the argument
tree.
Hint: Use Isar to have better control when to unfold with balanced_alt, and when to use
balanced_subt (e.g. to discharge the premises of the IH)
lemma mk_rbt_bheight: “balanced t =⇒ bheight (mk_rbt t) = min_height t”

Show that the returned tree satisfies the height invariant.
lemma mk_rbt_invh: “balanced t =⇒ invh (mk_rbt t)”

The Hard Part (3 Bonus Points)

For three bonus points, show that the returned tree satisfies the color invariant.
Warning: This requires careful case splitting, via a clever combination of automation
and manual proof (Isar, aux-lemmas), in order to deal with the multiple cases without
a combinatorial explosion of the proofs.

lemma mk_rbt_invc: “balanced t =⇒ invc (mk_rbt t)”

Homework 9.2 Linear-Time Repainting

Submission until Thursday, 7. 7. 2022, 23:59pm.
Write a linear-time version of mk_rbt, and show that it behaves like mk_rbt.
Idea: Compute the min-height during the same recursion as you build the tree.
Note: No formal complexity proof required.
fun mk_rbt ′ :: “ ′a tree ⇒ ′a rbt × nat”

lemma mk_rbt ′_refine: “fst (mk_rbt ′ t) = mk_rbt t”

3

