Functional Data Structures

Exercise Sheet 9

Exercise 9．1 Joining 2－3－Trees（II）

Write a join function for complete 2－3－trees of arbitrary height：The function shall take two 2 －3－trees l and r and an element x ，and return a new 2 －3－tree with the inorder－ traversal $l x r$ ．
Write two functions，one for the height of l being greater，the other for the height of r being greater．The result should also be a complete tree，with height equal to the greater height of l and r ．
height r greater：
fun joinL $::$＂＇a tree23 $\Rightarrow^{\prime} a \Rightarrow$＇a tree $23 \Rightarrow^{\prime}$＇a upI＂
lemma complete＿joinL：＂【 complete l；complete r r ；height $l<$ height $r \rrbracket$
\Longrightarrow complete $($ tree $I(j o i n L l x r)) \wedge h I(j o i n L l x r)=h e i g h t r "$
lemma inorder＿joinL：＂【 complete l ；complete r ；height $l<$ height $r \rrbracket$
$\Longrightarrow \operatorname{inorder}(\underset{\text { treeI }}{ }($ joinL $l x r))=$ inorder $l @ x \#$ inorder $r "$
height l greater：

```
fun joinR \(::\) " \(a\) tree \(23 \Rightarrow\) ' \(a \Rightarrow^{\prime}\) 'a tree \(23 \Rightarrow^{\prime}\) 'a upI"
lemma complete_joinR: "【 complete l; complete r; height \(l>\) height \(r \rrbracket \Longrightarrow\)
    complete (treeI (joinRlxr)) \(\wedge h(\) join R lx \(r)=\) height \(l "\)
```

lemma inorder_joinR: "【 complete l; complete r; height $l>$ height $r \rrbracket \Longrightarrow$ inorder (treeI (joinR
$l x r))=$ inorder $l @ x \#$ inorder $r "$

Combine both functions．


```
lemma "【 complete l; complete r\rrbracket\Longrightarrow complete (join l x r)"
lemma"\llbracket complete l; complete r \\Longrightarrow inorder (join l x r ) = inorder l @ x # inorder r"
```


Exercise 9.2 Union Function on Binary Tries

Define a function to merge two tries and show its correctness:

```
hide_const Tree23_Set.isin
```

fun union :: "trie \Rightarrow trie \Rightarrow trie"
lemma"isin (union a b) x=Tries_Binary.isin a $x \vee$ Tries_Binary.isin b x "

Homework 9.1 Balanced Tree to RBT

Submission until Thursday, 7. 7. 2022, 23:59pm.
A tree is balanced, if its minimum height and its height differ by at most 1.
The following function paints a balanced tree to form a valid red-black tree with the same structure. The task of this homework is to prove this!

```
fun mk_rbt :: "'a tree \<Rightarrow> 'a rbt" where
    "mk_rbt Leaf = Leaf"
| "mk_rbt (Node l a r) = (let
        l'=mk_rbt l;
        r'=mk_rbt r
    in
        if min_height l > min_height r then
            B (paint Red l') a r'
        else if min_height l < min_height r then
            B l' a (paint Red r')
        else
            B l' a r'
    )"
```


Warmup

Show that the left and right subtree of a balanced tree are, again, balanced
lemma balanced_subt:"balanced (Node lar) \Longrightarrow balanced $l \wedge$ balanced r "

Show the following alternative characterization of balanced.
Hint: Auxiliary lemma relating height t and Defs.min_height t
lemma balanced_alt:
"balanced $t \longleftrightarrow$ height $t=$ min_height $t \vee$ height $t=$ min_height $t+1$ "

The Easy Parts

Show that $m k _r b t$ does not change the inorder-traversal:
lemma $m k _r b t _i n o r d e r:$ "inorder $\left(m k _r b t t\right)=$ Tree.inorder t "
Show that the color of the root node is always black
lemma $m k _r b t _c o l o r: " c o l o r\left(m k _r b t t\right)=B l a c k "$

Medium Complex Parts

Show that the black-height of the returned tree is the minimum height of the argument tree.
Hint: Use Isar to have better control when to unfold with balanced__alt, and when to use balanced_subt (e.g. to discharge the premises of the IH)
lemma $m k _r b t _b h e i g h t: " b a l a n c e d ~ t \Longrightarrow b h e i g h t\left(m k _r b t t\right)=m i n _h e i g h t$ t "
Show that the returned tree satisfies the height invariant.
lemma $m k _r b t _i n v h: " b a l a n c e d ~ t \Longrightarrow i n v h\left(m k _r b t\right) "$

The Hard Part (3 Bonus Points)

For three bonus points, show that the returned tree satisfies the color invariant.
Warning: This requires careful case splitting, via a clever combination of automation and manual proof (Isar, aux-lemmas), in order to deal with the multiple cases without a combinatorial explosion of the proofs.
lemma $m k _r b t _i n v c:$ "balanced $t \Longrightarrow i n v c\left(m k _r b t t\right) "$

Homework 9.2 Linear-Time Repainting

Submission until Thursday, 7. 7. 2022, 23:59pm.
Write a linear-time version of $m k _r b t$, and show that it behaves like $m k _r b t$.
Idea: Compute the min-height during the same recursion as you build the tree.
Note: No formal complexity proof required.
fun $m k _r b t^{\prime}::$ "' a tree \Rightarrow 'a rbt \times nat"
lemma $m k _r b t^{\prime} _r e f i n e: ~ " f s t\left(m k _r b t^{\prime} t\right)=m k _r b t t^{\prime}$

