Functional Data Structures

Exercise Sheet 7

Exercise 7.1 Round wrt. Binary Search Tree

The distance between two integers x and y is $|x-y|$.

1. Define a function round $::$ int tree \Rightarrow int \Rightarrow int option, such that round $t x$ returns an element of a binary search tree t with minimum distance to x, and None if and only if t is empty.
Define your function such that it does no unnecessary recursions into branches of the tree that are known to not contain a minimum distance element.
2. Specify and prove that your function is correct. Note: You are required to phrase the correctness properties yourself!
Hint: Specify 3 properties:

- None is returned only for the empty tree.
- Only elements of the tree are returned.
- The returned element has minimum distance.

3. Estimate the time of your round function to be linear in the height of the tree
fun round :: "int tree \Rightarrow int \Rightarrow int option"
fun T _round :: "int tree \Rightarrow int \Rightarrow nat"

Exercise 7.2 Interval Lists

Sets of natural numbers can be implemented as lists of intervals, where an interval is simply a pair of numbers. For example the set $\{2,3,5,7,8,9\}$ can be represented by the list $[(2,3),(5,5),(7,9)]$. A typical application is the list of free blocks of dynamically allocated memory.

We introduce the type
type_synonym intervals $=$ " $(n a t * n a t)$ list"
Next, define an invariant that characterizes valid interval lists: For efficiency reasons intervals should be sorted in ascending order, the lower bound of each interval should
be less than or equal to the upper bound, and the intervals should be chosen as large as possible, i.e. no two adjacent intervals should overlap or even touch each other. It turns out to be convenient to define inv in terms of a more general function such that the additional argument is a lower bound for the intervals in the list:
fun inv' :: "nat \Rightarrow intervals \Rightarrow bool"
definition $i n v$ where "inv $\equiv i n v v^{\prime} 0 "$
To relate intervals back to sets define an abstraction function
fun set_of :: "intervals \Rightarrow nat set"
Define a function to add a single element to the interval list, and show its correctness
fun add :: "nat \Rightarrow intervals \Rightarrow intervals"
lemma add_correct_1:
"inv is \Longrightarrow inv ($a d d x i s)$ "
lemma add_correct_2:
"inv is \Longrightarrow set_of $(a d d x$ is) $=$ insert $x($ set_of is)"
Hints:

- Sketch the different cases (position of element relative to the first interval of the list) on paper first
- In one case, you will also need information about the second interval of the list. Do this case split via an auxiliary function! Otherwise, you may end up with a recursion equation of the form $f(x \# x s)=\ldots$ case $x s$ of $x^{\prime} \# x s^{\prime} \Rightarrow \ldots f\left(x^{\prime} \# x s^{\prime}\right)$... combined with split: list.splits this will make the simplifier loop!

Homework 7.1 Deletion from Interval Lists

Submission until Monday, 12 June, 23:59pm.
Implement and prove correct a delete function.
Hints:

- The correctness lemma is analogous to the one for add.
- A monotonicity property on $i n v^{\prime}$ may be useful, i.e., $i n v^{\prime} m$ is $\Longrightarrow i n v^{\prime} m^{\prime}$ is if m^{\prime} $\leq m$
- A bounding lemma, relating m and the elements of set_of is if $i n v^{\prime} m$ is, may be useful.
fun del :: " $n a t \Rightarrow$ intervals \Rightarrow intervals"
lemma del_correct_1: "inv is \Longrightarrow inv (del x is)"
lemma del_correct_2: "inv is \Longrightarrow set_of $($ del x is $)=($ set_of is $)-\{x\} "$

Homework 7.2 Addition of Interval to Interval List
Submission until Monday, 12 June, 23:59pm. Implement and prove correct a function to add a whole interval to an interval list. The runtime must not depend on the size of the interval itself, e.g., iterating over the interval and adding the elements separately is not allowed!
fun addi :: "nat \Rightarrow nat \Rightarrow intervals \Rightarrow intervals"
lemma addi_correct_1: "inv is $\Longrightarrow i \leq j \Longrightarrow i n v(a d d i ~ i j i s) "$
lemma addi_correct_2:
"inv is $\Longrightarrow i \leq j \Longrightarrow$ set_of $($ addi $i j$ is $)=\{i . . . j\}($ set_of is $) "$

