
Technische Universität München SS 23
Institut für Informatik 20. 6. 2023

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 9

Exercise 9.1 Indicate Unchanged by Option

Write an insert function for red-black trees that either inserts the element and returns
a new tree, or returns None if the element was already in the tree.
fun ins ′ :: “ ′a::linorder ⇒ ′a rbt ⇒ ′a rbt option”
lemma “invc t =⇒ case ins ′ x t of None ⇒ ins x t = t | Some t ′⇒ ins x t = t ′”

Exercise 9.2 Joining 2-3-Trees

Write a join function for complete 2-3-trees: The function shall take two 2-3-trees l and
r and an element x, and return a new 2-3-tree with the inorder-traversal l x r.
Write two functions, one for the height of l being greater, the other for the height of r
being greater. The result should also be a complete tree, with height equal to the greater
height of l and r.

height r greater:
fun joinL :: “ ′a tree23 ⇒ ′a ⇒ ′a tree23 ⇒ ′a upI”
lemma complete_joinL: “[[complete l; complete r ; height l < height r]]

=⇒ complete (treeI (joinL l x r)) ∧ hI (joinL l x r) = height r”

lemma inorder_joinL: “[[complete l; complete r ; height l < height r]]
=⇒ inorder (treeI (joinL l x r)) = inorder l @x # inorder r”

height l greater:
fun joinR :: “ ′a tree23 ⇒ ′a ⇒ ′a tree23 ⇒ ′a upI”
lemma complete_joinR: “[[complete l; complete r ; height l > height r]] =⇒

complete (treeI (joinR l x r)) ∧ hI (joinR l x r) = height l”

lemma inorder_joinR: “[[complete l; complete r ; height l > height r]] =⇒ inorder (treeI (joinR
l x r)) = inorder l @x # inorder r”

Combine both functions.

1

fun join :: “ ′a tree23 ⇒ ′a ⇒ ′a tree23 ⇒ ′a tree23”
lemma “[[complete l; complete r]] =⇒ complete (join l x r)”

lemma “[[complete l; complete r]] =⇒ inorder (join l x r) = inorder l @x # inorder r”

Homework 9.1 2-3 Tree to Red-Black Tree

Submission until Monday, June 26, 23:59pm.
In this task you are to define a function mk_rbt which constructs a red-black tree that
contains the members of a given 2-3 tree.
fun mk_rbt :: “ ′a tree23 ⇒ ′a rbt”

Show that the inorder traversal of the constructed tree is the same as the original:
lemma mk_rbt_inorder_btree: “Tree2.inorder (mk_rbt t) = Tree23.inorder t”

Show that the color of the root node is always black:
lemma mk_rbt_color_btree: “color (mk_rbt t) = Black”

Show that the returned tree satisfies the height invariant:

lemma mk_rbt_invh_btree: “Tree23.complete t =⇒ invh (mk_rbt t)”

Show that the returned tree satisfies the color invariant.
lemma mk_rbt_invc_btree: “invc (mk_rbt t)”

Homework 9.2 Red-Black Tree Property

Submission until Monday, June 26, 23:59pm.
In a red-black tree, all paths from a root to any leaf traverse the same number of black
nodes. In this exercise you are required to prove that. Consider the following function:
bhs 〈〉 = {0}
bhs 〈l, (uu, c), r〉 = (let H = bhs l ∪ bhs r in if c = Black then Suc ‘ H else H)

Note that f ‘ s denotes the image of a function f on a set s. With that in mind, the
above function encodes the set of numbers of black nodes traversed in all paths from the
root to any of the leaves. Prove the following lemma, which formalises the fact that all
paths starting at the root and ending at a leaf have the same number of black nodes.

theorem invh_iff_bhs: “invh t ←→ bhs t = {bheight t}”

2

