
Technische Universität München SS 23
Institut für Informatik 18. 7. 2023

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 13

The following are old exam questions!

Exercise 13.1 Amortized Complexity

A “stack with multipop” is a list with the following two interface functions:
fun push :: “ ′a ⇒ ′a list ⇒ ′a list” where
“push x xs = x # xs”

fun pop :: “nat ⇒ ′a list ⇒ ′a list” where
“pop n xs = drop n xs”

You may assume
definition T_push :: “ ′a ⇒ ′a list ⇒ nat” where
“T_push x xs = 1”

definition T_pop :: “nat ⇒ ′a list ⇒ nat” where
“T_pop n xs = min n (length xs)”

Use the potential method to show that the amortized complexity of push and pop is
constant.
If you need any properties of the auxiliary functions length, drop and min, you should
state them but you do not need to prove them.

Exercise 13.2 Converting List for Balanced Insert

Recall the standard insertion function for unbalanced binary search trees.

fun insert :: “ ′a::linorder ⇒ ′a tree ⇒ ′a tree” where
“insert x Leaf = Node Leaf x Leaf” |
“insert x (Node l a r) =

(case cmp x a of
LT ⇒ Node (insert x l) a r |
EQ ⇒ Node l a r |
GT ⇒ Node l a (insert x r))”

1



We define the function from_list, which inserts the elements of a list into an initially
empty search tree:
definition from_list :: “ ′a::linorder list ⇒ ′a tree” where

“from_list l = fold insert l Leaf”

Your task is to specify a function preprocess:: ′a, that preprocesses the list such that the
resulting tree is almost complete.
You may assume that the list is sorted, distinct, and has exactly 2^k − 1 elements for
some k. That is, your preprocess function must satisfy:

fun preprocess :: “ ′a list ⇒ ′a list”

lemma
assumes “sorted l”

and “distinct l”
and “length l = 2^k−1”

shows “set (preprocess l) = set l” and “acomplete (from_list (preprocess l))”

Note: No proofs required, only a specification of the preprocess function!

2


