Functional Data Structures with Isabelle/HOL

Tobias Nipkow

Fakultät für Informatik
Technische Universität München
2023-8-7

Part II

Functional Data Structures

Chapter 6

Sorting

(1) Correctness

(2) Insertion Sort
(3) Time
(4) Merge Sort
(1) Correctness

(2) Insertion Sort

(3) Time
(4) Merge Sort
sorted $::$ ('a::linorder) list \Rightarrow bool
sorted []$=$ True
sorted $(x \# y s)=((\forall y \in$ set $y s . x \leq y) \wedge$ sorted $y s)$

Correctness of sorting

Specification of sort $::\left({ }^{\prime} a:\right.$:linorder) list \Rightarrow ' a list:
sorted (sort xs)

Is that it? How about

$$
\text { set }(\operatorname{sort} x s)=\text { set } x s
$$

Better: every x occurs as often in sort $x s$ as in $x s$.
More succinctly:

$$
\text { mset }(\text { sort } x s)=\text { mset } x s
$$

where mset $::$ ' a list \Rightarrow 'a multiset

What are multisets?

Sets with (possibly) repeated elements

Some operations:

$$
\begin{aligned}
&\{\#\}: \\
& \text { add_mset }: \\
&+ \text { 'a multiset } \\
&+: \\
& \text { mset }: \\
& \text { 'a multiset } \Rightarrow \text { 'a multiset } \Rightarrow \text { 'a multiset } \\
& \Rightarrow \text { 'a multiset } \Rightarrow \text { 'a multiset } \\
& \text { set_mset }:
\end{aligned}
$$

Import HOL-Library.Multiset

(1) Correctness

(2) Insertion Sort

HOL/Data_Structures/Sorting.thy

Insertion Sort Correctness

(1) Correctness

(2) Insertion Sort

(3) Time
(4) Merge Sort

Principle: Count function calls

For every function

$$
f:: \tau_{1} \Rightarrow \ldots \Rightarrow \tau_{n} \Rightarrow \tau
$$ define a timing function $T_{f}:: \tau_{1} \Rightarrow \ldots \Rightarrow \tau_{n} \Rightarrow$ nat:

Translation of defining equations:
$\mathcal{E} \llbracket f p_{1} \ldots p_{n}=e \rrbracket=\left(T_{f} p_{1} \ldots p_{n}=\mathcal{T} \llbracket e \rrbracket+1\right)$
Translation of expressions:
$\mathcal{T} \llbracket g e_{1} \ldots e_{k} \rrbracket=\mathcal{T} \llbracket e_{1} \rrbracket+\ldots+\mathcal{T} \llbracket e_{k} \rrbracket+T_{g} e_{1} \ldots e_{k}$
All other operations (variable access, constants, constructors, primitive operations on bool and numbers) cost 1 time unit

Example: @

$\mathcal{E} \llbracket] @ y s=y s \rrbracket$
$=\left(T_{@}[] y s=\mathcal{T} \llbracket y s \rrbracket+1\right)$
$=\left(T_{@}[] y s=2\right)$
$\mathcal{E} \llbracket(x \# x s) @ y s=x \#(x s @ y s) \rrbracket$
$=\left(T_{@}(x \# x s) y s=\mathcal{T} \llbracket x \#(x s @ y s) \rrbracket+1\right)$
$=\left(T_{@}(x \# x s) y s=T_{@} x s y s+5\right)$
$\mathcal{T} \llbracket x \#(x s @ y s) \rrbracket$
$=\mathcal{T} \llbracket x \rrbracket+\mathcal{T} \llbracket x s @ y s \rrbracket+T_{\#} x(x s @ y s)$
$=1+\left(\mathcal{T} \llbracket x s \rrbracket+\mathcal{T} \llbracket y s \rrbracket+T_{@} x s y s\right)+1$
$=1+\left(1+1+T_{@} x s y s\right)+1$

if and case

So far we model a call－by－value semantics
Conditionals and case expressions are evaluated lazily．
\mathcal{T} 【if b then e_{1} else e_{2} 】
$=\mathcal{T} \llbracket b \rrbracket+\left(\right.$ if b then $\mathcal{T} \llbracket e_{1} \rrbracket$ else $\left.\mathcal{T} \llbracket e_{2} \rrbracket\right)$
\mathcal{T} 【case e of $p_{1} \Rightarrow e_{1}|\ldots| p_{k} \Rightarrow e_{k} \rrbracket$
$=\mathcal{T} \llbracket e \rrbracket+\left(\right.$ case e of $\left.p_{1} \Rightarrow \mathcal{T} \llbracket e_{1} \rrbracket|\ldots| p_{k} \Rightarrow \mathcal{T} \llbracket e_{k} \rrbracket\right)$
Also special：let $x=t_{1}$ in t_{2}

$O($.$) is enough$

\Longrightarrow Reduce all additive constants to 1

Example

$T_{@}(x \# x s) y s=T_{@} x s y s+5 \rightsquigarrow$
$T_{@}(x \# x s) y s=T_{@} x s y s+1$
This means we count only

- the defined functions via T_{f} and
- +1 for the function call itself.

All other operations (variables etc) cost 0 , not 1 .

Discussion

- The definition of T_{f} from f can be automated.
- The correctness of T_{f} could be proved w.r.t. a semantics that counts computation steps.
- Precise complexity bounds (as opposed to $O($.$))$ would require a formal model of (at least) the compiler and the hardware.

HOL/Data_Structures/Sorting.thy

Insertion sort complexity

(1) Correctness

(2) Insertion Sort

(3) Time
(4) Merge Sort
(4) Merge Sort

Top-Down
Bottom-Up
merge $::$ 'a list $\Rightarrow{ }^{\prime}$ a list \Rightarrow 'a list
merge [] ys = ys
merge xs [] =xs
merge $(x \# x s)(y \# y s)=$
(if $x \leq y$ then $x \#$ merge $x s(y \# y s)$
else $y \#$ merge $(x \# x s) y s)$
msort :: 'a list $\Rightarrow{ }^{\prime} a$ list
msort $x s=$
(let $n=$ length $x s$
in if $n \leq 1$ then $x s$
else merge (msort (take (n div 2) xs))
(msort (drop ($n \operatorname{div} 2) x s)$)

Number of comparisons

C_merge :: 'a list \Rightarrow 'a list \Rightarrow nat
C_msort : : 'a list \Rightarrow nat
Lemma
C_merge xs ys
Theorem
length $x s=2^{k} \Longrightarrow$ C_msort $x s \leq k * 2^{k}$

HOL/Data_Structures/Sorting.thy

Merge Sort
(4) Merge Sort

Top-Down
Bottom-Up

```
msort_bu :: 'a list }=>\mp@subsup{}{}{\prime}'a lis
msort_bu xs = merge_all (map ( }\lambdax.[x])xs
merge_all :: 'a list list = 'a list
merge_all [] = []
merge_all [xs] = xs
merge_all xss = merge_all (merge_adj xss)
merge_adj :: 'a list list = ' 'a list list
merge_adj [] = []
merge_adj [xs]= [xs]
merge_adj (xs # ys # zss)=
merge xs ys # merge_adj zss
```


Number of comparisons

C_merge_adj :: 'a list list \Rightarrow nat
C_merge_all :: 'a list list \Rightarrow nat
C_msort_bu :: 'a list \Rightarrow nat
Theorem
length $x s=2^{k} \Longrightarrow$ C_msort_bu xs $\leq k * 2^{k}$

HOL/Data_Structures/Sorting.thy

Bottom-Up Merge Sort

Even better

Make use of already sorted subsequences

Example

Sorting $[7,3,1,2,5]$:
do not start with $[[7],[3],[1],[2],[5]]$ but with $[[1,3,7],[2,5]]$

Archive of Formal Proofs

https://www.isa-afp.org/entries/
Efficient-Mergesort.shtml

Chapter 7

Binary Trees

(5) Binary Trees

(6) Basic Functions

7 (Almost) Complete Trees

(5) Binary Trees

(6) Basic Functions

(7 (Almost) Complete Trees

HOL/Library/Tree.thy

Binary trees

datatype 'a tree $=$ Leaf \mid Node ('a tree) 'a ('a tree)

Abbreviations:

$$
\begin{aligned}
\rangle & \equiv \text { Leaf } \\
\langle l, a, r\rangle & \equiv \text { Node l a r }
\end{aligned}
$$

Most of the time: tree $=$ binary tree

(5) Binary Trees

(6) Basic Functions
(7) (Almost) Complete Trees

Tree traversal

inorder :: 'a tree \Rightarrow 'a list
inorder $\rangle=[]$
inorder $\langle l, x, r\rangle=$ inorder $l @[x]$ @ inorder r
preorder :: 'a tree \Rightarrow 'a list
preorder $\rangle=[]$
preorder $\langle l, x, r\rangle=x \#$ preorder l @ preorder r
postorder :: 'a tree \Rightarrow 'a list postorder $\rangle=[]$
postorder $\langle l, x, r\rangle=$ postorder l @ postorder r @ $[x]$

Size

$$
\begin{aligned}
& \text { size :: 'a tree } \Rightarrow \text { nat } \\
& |\rangle|=0 \\
& |\langle l,-r\rangle|=|r|+|r|+1 \\
& \text { size }::{ }^{\prime} \text { 'a tree } \Rightarrow \text { nat } \\
& \left|\left\rangle\left.\right|_{1}=1\right.\right. \\
& \left|\left\langle l_{-,}, r\right\rangle\right|_{1}=\left|l_{1}+|r|_{1}\right.
\end{aligned}
$$

Lemma $|t|_{1}=|t|+1$
Warning: |.| and |.|1 only on slides

Height

$$
\begin{aligned}
& \text { height }:: \text { 'a tree } \Rightarrow \text { nat } \\
& h(\rangle)=0 \\
& h(\langle l,-, r\rangle)=\max (h(l))(h(r))+1
\end{aligned}
$$

Warning: $h($.$) only on slides$
Lemma $h(t) \leq|t|$
Lemma $|t|_{1} \leq 2^{h(t)}$

Minimal height

min_height $::$ ' a tree \Rightarrow nat
$m h(\rangle)=0$
$m h(\langle l,-, r\rangle)=\min (m h(l))(m h(r))+1$
Warning: mh(.) only on slides
Lemma $m h(t) \leq h(t)$
Lemma $2^{m h(t)} \leq|t|_{1}$

(5) Binary Trees

(6) Basic Functions

7 (Almost) Complete Trees

Complete tree

complete :: 'a tree \Rightarrow bool
complete $\rangle=$ True
complete $\langle l$, , $r\rangle=$
$(h(l)=h(r) \wedge$ complete $l \wedge$ complete $r)$
Lemma complete $t=(m h(t)=h(t))$
Lemma complete $t \Longrightarrow|t|_{1}=2^{h(t)}$
Lemma \neg complete $t \Longrightarrow|t|_{1}<2^{h(t)}$
Lemma \neg complete $t \Longrightarrow 2^{m h(t)}<|t|_{1}$
Corollary $|t|_{1}=2^{h(t)} \Longrightarrow$ complete t
Corollary $|t|_{1}=2^{m h(t)} \Longrightarrow$ complete t

Almost complete tree

acomplete :: 'a tree \Rightarrow bool
acomplete $t=(h(t)-m h(t) \leq 1)$
Almost complete trees have optimal height: Lemma If acomplete t and $|t| \leq\left|t^{\prime}\right|$ then $h(t) \leq h\left(t^{\prime}\right)$.

Warning

- The terms complete and almost complete are not defined uniquely in the literature.
- For example, Knuth calls complete what we call almost complete.

Chapter 8

Search Trees

8 Unbalanced BST
(9) Abstract Data Types
(10) 2-3 Trees
(11) Red-Black Trees
(12) More Search Trees
(13) Union, Intersection, Difference on BSTs
(14) Tries and Patricia Tries

Most of the material focuses on BSTs $=$ binary search trees

BSTs represent sets

Any tree represents a set:

$$
\begin{aligned}
& \text { set_tree }:: \text { ' } a \text { tree } \Rightarrow \text { 'a set } \\
& \text { set_tree }\rangle=\{ \} \\
& \text { set_tree }\langle l, x, r\rangle=\text { set_tree } l \cup\{x\} \cup \text { set_tree } r
\end{aligned}
$$

A BST represents a set that can be searched in time $O(h(t))$

Function set_tree is called an abstraction function because it maps the implementation to the abstract mathematical object

bst

bst :: 'a tree \Rightarrow bool
bst $\rangle=$ True
$b s t\langle l, a, r\rangle=$
$((\forall x \in$ set_tree l. $x<a) \wedge$
$(\forall x \in$ set_tree r. $a<x) \wedge b s t l \wedge b s t r)$

Type ' a must be in class linorder (' a :: linorder) where linorder are linear orders (also called total orders).

Note: nat, int and real are in class linorder

Set interface

An implementation of sets of elements of type ' a must provide

- An implementation type 's
- empty $::$'s
- insert :: ' $a \Rightarrow$ ' $s \Rightarrow$'s
- delete $::$ ' $a \Rightarrow$'s \Rightarrow 's
- isin :: 's \Rightarrow ' $a \Rightarrow$ bool

Map interface

Instead of a set, a search tree can also implement a map from ' a to ' b :

- An implementation type ' m
- empty :: 'm
- update $::{ }^{\prime} a \Rightarrow{ }^{\prime} b{ }^{\prime} m \Rightarrow{ }^{\prime} m$
- delete $::{ }^{\prime} a \Rightarrow$ ' $m \Rightarrow$ ' m
- lookup $::$ ' $m \Rightarrow{ }^{\prime} a \Rightarrow$ 'b option

Sets are a special case of maps

Comparison of elements

We assume that the element type ' a is a linear order
Instead of using $<$ and \leq directly:
datatype $c m p _v a l=L T|E Q| G T$
cmp $x y=$
(if $x<y$ then $L T$ else if $x=y$ then $E Q$ else $G T$)
(8) Unbalanced BST
(9) Abstract Data Types
(10) 2-3 Trees
(11) Red-Black Trees
(12) More Search Trees
(13) Union, Intersection, Difference on BSTs
(14) Tries and Patricia Tries

8 Unbalanced BST

Implementation
Correctness
Correctness Proof Method Based on Sorted Lists

Implementation type: 'a tree
empty $=$ Leaf
insert $x\rangle=\langle\langle \rangle, x,\langle \rangle\rangle$
insert $x\langle l, a, r\rangle=($ case cmp x a of

$$
\begin{aligned}
& L T \Rightarrow\langle\text { insert } x l, a, r\rangle \\
& E Q \Rightarrow\langle l, a, r\rangle \\
& G T \Rightarrow\langle l, a, \text { insert } x r\rangle)
\end{aligned}
$$

isin $\rangle x=$ False
isin $\langle l, a, r\rangle x=($ case $c m p x a$ of
$L T \Rightarrow \operatorname{isin} l x$
$E Q \Rightarrow$ True
$G T \Rightarrow i \sin r x)$
delete $x\rangle=\langle \rangle$ delete $x\langle l, a, r\rangle=$
(case amp x a of
$L T \Rightarrow\langle$ delete $x l, a, r\rangle$
$E Q \Rightarrow$ if $r=\langle \rangle$ then l
else let $\left(a^{\prime}, r^{\prime}\right)=$ split_min r in $\left\langle l, a^{\prime}, r^{\prime}\right\rangle$
$G T \Rightarrow\langle l, a$, delete $x r\rangle)$
split_min $\langle l, a, r\rangle=$
(if $l=\langle \rangle$ then (a, r)
else let $\left(x, l^{\prime}\right)=$ split_min l in $\left.\left(x,\left\langle l^{\prime}, a, r\right\rangle\right)\right)$
(8) Unbalanced BST

Implementation
Correctness
Correctness Proof Method Based on Sorted Lists

Why is this implementation correct?

Because empty insert delete isin simulate $\} \cup\{\}-.\{.\} \in$

$$
\left.\begin{array}{l}
\text { set_tree empty }=\{ \} \\
\text { set_tree }(\text { insert } x
\end{array} t\right)=\text { set_tree } t \cup\{x\},\left\{\begin{array}{l}
\text { set_tree } t-\{x\} \\
\text { set_tree }\left(\begin{array}{ll}
\text { delete } & x
\end{array} t\right)=\text { set } \\
\text { isin } t x=(x \in \text { set_tree } t)
\end{array}\right.
$$

Under the assumption bst t

Also: bst must be invariant

> bst empty
> bst $t \Longrightarrow$ bst (insert $x t)$
> bst $t \Longrightarrow$ bst (delete x)
(8) Unbalanced BST

Implementation
Correctness
Correctness Proof Method Based on Sorted Lists

Key idea

Local definition:

sorted means sorted w.r.t. $<$

No duplicates!
$\Longrightarrow \quad$ bst t can be expressed as $\operatorname{sorted}($ inorder $t)$
Conduct proofs on sorted lists, not sets

Two kinds of invariants

- Unbalanced trees only need the invariant bst
- More efficient search trees come with additional structural invariants $=$ balance criteria.

Correctness via sorted lists

Correctness proofs of (almost) all search trees covered in this course can be automated.

Except for the structural invariants.
Therefore we concentrate on the latter.

For details see file See HOL/Data_Structures/Set_Specs.thy and T. Nipkow. Automatic Functional Correctness Proofs for Functional Search Trees. Interactive Theorem Proving, LNCS, 2016.

(8) Unbalanced BST

(9) Abstract Data Types
(10) 2-3 Trees
(11) Red-Black Trees
(12) More Search Trees
(13) Union, Intersection, Difference on BSTs
(14) Tries and Patricia Tries

A methodological interlude:
A closer look at ADT principles and their realization in Isabelle

Set and binary search tree as examples
(ignoring delete)
(9) Abstract Data Types

Defining ADTs
Using ADTs
Implementing ADTs

ADT $=$ interface + specification

Example (Set interface)

empty :: 's
insert : : ' $a \Rightarrow$ ' $s \Rightarrow$'s
isin :: ' $s \Rightarrow{ }^{\prime} a \Rightarrow$ bool
We assume that each ADT describes one

Type of Interest T

Above: $T=$'s

Model-oriented specification

Specify type T via a model $=$ existing HOL type A Motto: T should behave like A

Specification of "behaves like" via an

- abstraction function $\alpha:: T \Rightarrow A$

Only some elements of T represent elements of A :

- invariant invar :: $T \Rightarrow$ bool
α and invar are part of the interface, but only for specification and verification purposes

Example (Set ADT)

empty :: ...
insert :: ...
isin :: ...
set $:: \quad$ ' $s \Rightarrow$ ' a set (name arbitrary)
invar :: 's bool (name arbitrary)
set empty $=\{ \}$
invar $s \Longrightarrow \operatorname{set}($ insert $x s)=\operatorname{set} s \cup\{x\}$
invar $s \Longrightarrow \quad i \sin s x=(x \in \operatorname{set} s)$
invar empty
invar $s \Longrightarrow \quad \operatorname{invar}($ insert $x s)$

In Isabelle: locale

locale $S e t=$
fixes empty $::$'s
fixes insert : : ' $a \Rightarrow$ ' $s \Rightarrow$'s
fixes isin $::$ ' $s \Rightarrow$ ' $a \Rightarrow$ bool
fixes set :: 's \Rightarrow ' a set
fixes invar :: 's \Rightarrow bool
assumes set empty $=\{ \}$
assumes invar $s \Longrightarrow$ isin $s x=(x \in$ set $s)$
assumes invar $s \Longrightarrow \operatorname{set}($ insert $x s)=\operatorname{set} s \cup\{x\}$
assumes invar empty
assumes invar $s \Longrightarrow \operatorname{invar}($ insert $x s$)
See HOL/Data_Structures/Set_Specs.thy

Formally, in general

To ease notation, generalize α and invar (conceptually): α is the identity and invar is True on types other than T

Specification of each interface function f (on T):

- f must behave like some function f_{A} (on A): invar $t_{1} \wedge \ldots \wedge$ invar $t_{n} \Longrightarrow$ $\alpha\left(f t_{1} \ldots t_{n}\right)=f_{A}\left(\alpha t_{1}\right) \ldots\left(\alpha t_{n}\right)$ (α is a homomorphism)
- f must preserve the invariant: invar $t_{1} \wedge \ldots \wedge \operatorname{invar} t_{n} \Longrightarrow \operatorname{invar}\left(f t_{1} \ldots t_{n}\right)$
(9) Abstract Data Types

Defining ADTs
Using ADTs
Implementing ADTs

The purpose of an ADT is to provide a context for implementing generic algorithms parameterized with the interface functions of the ADT.

Example

locale $S e t=$
fixes ...
assumes ...
begin
fun set_of_list where
set_of_list [] = empty \mid
set_of_list $(x \# x s)=$ insert $x($ set_of_list $x s)$
lemma invar(set_of_list xs)
by (induction $x s$)
(auto simp: invar_empty invar_insert)
end
(9) Abstract Data Types

Defining ADTs
Using ADTs
Implementing ADTs
(1) Implement interface
(2) Prove specification

Example

Define functions isin and insert on type 'a tree with invariant bst.

Now implement locale Set:

In Isabelle: interpretation

interpretation Set
where empty = Leaf and $i s i n=i$ isin
and insert $=$ insert and set $=$ set_tree and invar $=b s t$ proof
show set_tree Leaf $=\{ \}\langle$ proof \rangle
next
fix s assume bst s
show set_tree $($ insert $x s)=$ set_tree $s \cup\{x\}$
〈proof〉
next
!
qed

Interpretation of Set also yields

- function set_of_list :: 'a list \Rightarrow 'a tree
- theorem bst (set_of_list xs)

Now back to search trees ...

(8) Unbalanced BST

(9) Abstract Data Types
(10) 2-3 Trees
(11) Red-Black Trees
(12) More Search Trees
(13) Union, Intersection, Difference on BSTs
(14) Tries and Patricia Tries

HOL/Data_Structures/ Tree23_Set.thy

2-3 Trees

datatype 'a tree $23=\langle \rangle$
Node2 ('a tree23) 'a ('a tree23)
Node3 ('a tree23) 'a ('a tree23) 'a ('a tree23)
Abbreviations:

$$
\begin{aligned}
\langle l, a, r\rangle & \equiv N o d e 2 l a r \\
\langle l, a, m, b, r\rangle & \equiv N o d e 3 l a m b r
\end{aligned}
$$

isin

$i \sin \langle l, a, m, b, r\rangle x=$
(case cmp x a

$$
\begin{aligned}
& L T \Rightarrow \text { isin } l x \\
& E Q \Rightarrow \text { True } \\
& G T \Rightarrow \text { case cmp } x b \text { of }
\end{aligned}
$$

$$
\begin{aligned}
& L T \Rightarrow i \sin m x \\
& E Q \Rightarrow \text { True } \\
& G T \Rightarrow i \sin r x)
\end{aligned}
$$

Assumes the usual ordering invariant

Structural invariant complete

All leaves are at the same level:
complete $\rangle=$ True
complete $\langle l, \quad, r\rangle=$
$(h(l)=h(r) \wedge$ complete $l \wedge$ complete $r)$
complete $\langle l,, m,-r\rangle=$
$(h(l)=h(m) \wedge h(m)=h(r) \wedge$
complete $l \wedge$ complete $m \wedge$ complete r)
Lemma
complete $t \Longrightarrow 2^{h(t)} \leq|t|+1$

Insertion

The idea:

$$
\begin{aligned}
\text { Leaf } & \rightsquigarrow \text { Node } 2 \\
\text { Node } 2 & \rightsquigarrow \text { Node3 } \\
\text { Node } 3 & \rightsquigarrow \text { overflow, pass } 1 \text { element back up }
\end{aligned}
$$

Insertion

Two possible return values:

- tree accommodates new element without increasing height: $T I t$
- tree overflows: OF lxr
datatype ' a upI $=T I$ ('a tree 23)
OF ('a tree 23) 'a ('a tree 23)
treeI :: 'a upI \Rightarrow 'a tree 23
treeI $($ TI $t)=t$
treeI $($ OF lar $)=\langle l, a, r\rangle$

Insertion

insert : : ' $a \Rightarrow$ 'a tree $23 \Rightarrow{ }^{\prime} a$ tree 23 insert $x t=$ treeI (ins $x t$)

$$
\text { ins }::{ }^{\prime} a \Rightarrow \text { ' } a \text { tree } 23 \Rightarrow \text { 'a upI }
$$

Insertion

ins $x\rangle=O F\langle \rangle x\langle \rangle$
ins $x\langle l, a, r\rangle=$
case $c m p x a$ of
$L T \Rightarrow$ case ins $x l$ of

$$
\begin{aligned}
& T I l^{\prime} \Rightarrow T I\left\langle l^{\prime}, a, r\right\rangle \\
& O F l_{1} b l_{2} \Rightarrow T I\left\langle l_{1}, b, l_{2}, a, r\right\rangle
\end{aligned}
$$

$E Q \Rightarrow T I\langle l, a, r\rangle$
$G T \Rightarrow$ case ins x of

$$
\begin{aligned}
& T I r^{\prime} \Rightarrow T I\left\langle l, a, r^{\prime}\right\rangle \\
& O F r_{1} b r_{2} \Rightarrow T I\left\langle l, a, r_{1}, b, r_{2}\right\rangle
\end{aligned}
$$

Insertion

ins $x\langle l, a, m, b, r\rangle=$
case $c m p x a$ of
$L T \Rightarrow$ case ins $x l$ of

$$
T I l^{\prime} \Rightarrow T I\left\langle l^{\prime}, a, m, b, r\right\rangle
$$

$$
O F l_{1} c l_{2} \Rightarrow O F\left\langle l_{1}, c, l_{2}\right\rangle a\langle m, b, r\rangle
$$

$E Q \Rightarrow T I\langle l, a, m, b, r\rangle$
$G T \Rightarrow$
case amp $x b$ of
$L T \Rightarrow$ case ins $x m$ of

$$
\begin{aligned}
& T I m^{\prime} \Rightarrow T I\left\langle l, a, m^{\prime}, b, r\right\rangle \\
& \mid O F m_{1} c m_{2} \Rightarrow O F\left\langle l, a, m_{1}\right\rangle c\left\langle m_{2}, b, r\right\rangle \\
E Q \Rightarrow & T I\langle l, a, m, b, r\rangle \\
G T \Rightarrow & \text { case ins } x \text { r of }
\end{aligned}
$$

Insertion preserves complete

Lemma

complete $t \Longrightarrow$
complete $($ tree $I($ ins a $t)) \wedge h I($ ins a $t)=h(t)$
where hI :: 'a upI \Rightarrow nat
$h I(T I t)=h(t)$
$h I($ OF lar) $=h(l)$
Proof by induction on t. Base and step automatic.

Corollary

complete $t \Longrightarrow$ complete (insert a t)

Deletion

The idea:

$$
\begin{aligned}
& \text { Node } 3 \rightsquigarrow \text { Node } 2 \\
& \text { Node } 2 \rightsquigarrow \text { underflow, height decreases by } 1
\end{aligned}
$$

Underflow: merge with siblings on the way up

Deletion

Two possible return values:

- height unchanged: TD t
- height decreased by 1 : UF t
datatype 'a upD $=T D($ 'a tree 23$) \mid U F$ ('a tree 23$)$
treeD $(T D t)=t$
tree $D(U F t)=t$

Deletion

delete $:: ~ ' a \Rightarrow{ }^{\prime}$ 'a tree $23 \Rightarrow{ }^{\prime} a$ tree 23 delete $x t=\operatorname{tree} D(\operatorname{del} x t)$

$$
\text { del }::{ }^{\prime} a \Rightarrow \text { 'a tree } 23 \Rightarrow \text { 'a upD }
$$

Deletion

$\operatorname{del} x\rangle=T D\langle \rangle$ del $x\langle\rangle, a,\langle \rangle\rangle=$
(if $x=a$ then $U F\rangle$ else $T D\langle\rangle, a,\langle \rangle\rangle$) $\operatorname{del} x\langle\rangle, a,\langle \rangle, b,\langle \rangle\rangle=\ldots$
del $x\langle l, a, r\rangle=$
(case cmp x a of

$$
\begin{aligned}
& L T \Rightarrow \text { node } 21(\text { del } x l) a r \\
& E Q \Rightarrow \text { let }\left(a^{\prime}, t\right)=\text { split_min } r \text { in node } 22 l a^{\prime} t \\
& G T \Rightarrow \text { node } 22 l a(\text { del } x r))
\end{aligned}
$$

node 21 $\left(T D t_{1}\right)$ a $t_{2}=T D\left\langle t_{1}, a, t_{2}\right\rangle$
node 21 (UF $\left.t_{1}\right) a\left\langle t_{2}, b, t_{3}\right\rangle=U F\left\langle t_{1}, a, t_{2}, b, t_{3}\right\rangle$
node $21\left(U F t_{1}\right) a\left\langle t_{2}, b, t_{3}, c, t_{4}\right\rangle=$
$T D\left\langle\left\langle t_{1}, a, t_{2}\right\rangle, b,\left\langle t_{3}, c, t_{4}\right\rangle\right\rangle$
Analogous: node 22

Deletion preserves complete

After 13 simple lemmas:
Lemma
complete $t \Longrightarrow$ complete $($ tree D $($ del $x t)$)
Corollary
complete $t \Longrightarrow$ complete (delete $x t$)

Beyond 2-3 trees

datatype 'a tree $234=$
Leaf | Node2 ... | Node3 ... | Node4 ...

Like 2-3 trees, but with many more cases
The general case:
B-trees and (a, b)-trees
(8) Unbalanced BST
(9) Abstract Data Types
(10) 2-3 Trees
(11) Red-Black Trees
(12) More Search Trees
(13) Union, Intersection, Difference on BSTs
(14) Tries and Patricia Tries

HOL/Data_Structures/
 RBT_Set.thy

Relationship to 2-3-4 trees

Idea: encode 2-3-4 trees as binary trees; use color to express grouping

$$
\begin{aligned}
\rangle & \approx\rangle \\
\left\langle t_{1}, a, t_{2}\right\rangle & \approx\left\langle t_{1}, a, t_{2}\right\rangle \\
\left\langle t_{1}, a, t_{2}, b, t_{3}\right\rangle & \approx\left\langle\left\langle t_{1}, a, t_{2}\right\rangle, b, t_{3}\right\rangle \text { or }\left\langle t_{1}, a,\left\langle t_{2}, b, t_{3}\right\rangle\right\rangle \\
\left\langle t_{1}, a, t_{2}, b, t_{3}, c, t_{4}\right\rangle & \approx\left\langle\left\langle t_{1}, a, t_{2}\right\rangle, b,\left\langle t_{3}, c, t_{4}\right\rangle\right\rangle
\end{aligned}
$$

Red means "I am part of a bigger node"

Structural invariants

- The root is
- Every \rangle is considered Black.
- If a node is Red,
- All paths from a node to a leaf have the same number of

Red-black trees

datatype color $=$ Red \mid Black
type_synonym 'a rbt $=\left({ }^{\prime} a \times\right.$ color $)$ tree
Abbreviations:

$$
\begin{aligned}
& \text { Rlar } \equiv \text { Node l(a, Red)r } \\
& \text { Blar } \equiv \text { Node l(a, Black)r }
\end{aligned}
$$

Color

color : : 'a rbt \Rightarrow color
color $\rangle=$ Black
$\operatorname{color}\left\langle{ }_{-},(-, c),{ }_{-}\right\rangle=c$
paint :: color $\Rightarrow{ }^{\prime} a$ rbt $\Rightarrow{ }^{\prime} a$ rbt
paint $c\rangle=\langle \rangle$
paint $c\langle l,(a,-), r\rangle=\langle l,(a, c), r\rangle$

Structural invariants

$r b t::{ }^{\prime} a$ rbt \Rightarrow bool
rbt $t=($ invc $t \wedge$ invh $t \wedge$ color $t=$ Black $)$
invc : : 'a rbt \Rightarrow bool
invc $\rangle=$ True
$\operatorname{invc}\langle l,(-, c), r\rangle=$
$((c=$ Red \longrightarrow color $l=$ Black \wedge color $r=$ Black $) \wedge$ inve $l \wedge$ inve $r)$

Structural invariants

invh :: 'a rbt \Rightarrow bool
invh $\rangle=\operatorname{True}$
$\operatorname{invh}\left\langle l,\left({ }_{-},-\right), r\right\rangle=(b h(l)=b h(r) \wedge i n v h l \wedge i n v h r)$
bheight :: 'a rbt \Rightarrow nat
$b h(\rangle)=0$
$b h(\langle l,(-, c),-\rangle)=$
(if $c=$ Black then $b h(l)+1$ else $b h(l)$)

Logarithmic height

Lemma
$r b t t \Longrightarrow h(t) \leq 2 * \log _{2}|t|_{1}$
Intuition: $h(t) / 2 \leq b h(t) \leq m h(t) \leq \log _{2}|t|_{1}$

Insertion

insert : : ' $a \Rightarrow$ ' a rbt $\Rightarrow{ }^{\prime} a$ rbt
insert $x t=$ paint Black (ins $x t$)
ins : : ' $a \Rightarrow$ ' a rbt $\Rightarrow{ }^{\prime} a$ rbt
ins $x\rangle=R\langle \rangle x\langle \rangle$
ins $x(B l a r)=($ case cmp $x a$ of

$$
\begin{aligned}
& L T \Rightarrow \text { baliL }(\text { ins } x l) a r \\
& E Q \Rightarrow B l a r \\
& G T \Rightarrow b a l i R l a(\text { ins } x r))
\end{aligned}
$$

ins $x(R l a r)=($ case cmp $x a$ of

$$
L T \Rightarrow R(\text { ins } x l) a r
$$

$$
E Q \Rightarrow R l a r
$$

$$
G T \Rightarrow R l a(\text { ins } x r))
$$

Adjusting colors

baliL, baliR :: 'a rbt $\Rightarrow{ }^{\prime} a \Rightarrow$ 'a rbt \Rightarrow ' $a r b t$

- Combine arguments $l a r$ into tree, ideally $\langle l, a, r\rangle$
- Treat invariant violation Red-Red in l / r
baliL $\left(R\left(R t_{1} a_{1} t_{2}\right) a_{2} t_{3}\right) a_{3} t_{4}$
$=R\left(B t_{1} a_{1} t_{2}\right) a_{2}\left(B t_{3} a_{3} t_{4}\right)$
baliL $\left(R t_{1} a_{1}\left(R t_{2} a_{2} t_{3}\right)\right) a_{3} t_{4}$

$$
=R\left(\begin{array}{lll}
B t_{1} & a_{1} & t_{2}
\end{array}\right) a_{2}\left(\begin{array}{lll}
B t_{3} & a_{3} & t_{4}
\end{array}\right)
$$

- Principle: replace Red-Red by Red-Black
- Final equation:
baliL lar = Blar
- Symmetric: baliR

Preservation of invariant

After 14 simple lemmas:
Theorem
$r b t \quad \Longrightarrow r b t($ insert $x t)$

Proof in CLRS

In of each iteration of the thop.
4 Node z is med

 harian gres us a weftul property at bep trmindike.

C. We here altenty seen that propenies 1, 3, and 5 hadd whien RB-Lxsekt Fixutr is culled

 dex to

Its cummie
30

Cant: ç anoix yam

 medomet
terniem.

 Sturtar was

 tution in ase 3

Deletion code

delete $x t=$ paint Black $(\operatorname{del} x t)$
$d e l_{-}\langle \rangle=\langle \rangle$
del $x\langle l,(a,-), r\rangle=$
(case cmp $x a$ of
$L T \Rightarrow$
if $l \neq\langle \rangle \wedge$ color $l=$ Black
then baldL (del x l) a r else $R(\operatorname{del} x l) a r$
$E Q \Rightarrow$
if $r=\langle \rangle$ then l
else let $\left(a^{\prime}, r^{\prime}\right)=$ split_min r
in if color $r=$ Black then baldR la $a^{\prime} r^{\prime}$ else $R l a^{\prime} r^{\prime}$

$$
G T \Rightarrow
$$

Deletion code

split_min $\left\langle l,\left(a,,_{-}\right), r\right\rangle=$
(if $l=\langle \rangle$ then (a, r)
else let $\left(x, l^{\prime}\right)=$ split_min l in (x, if color $l=$ Black then baldL l^{\prime} a r else $\left.R l^{\prime} a r\right)$)
baldL $\left(R t_{1} a t_{2}\right) b t_{3}=R\left(B t_{1} a t_{2}\right) b t_{3}$ baldL $t_{1} a\left(B t_{2} b t_{3}\right)=b a l i R t_{1} a\left(R t_{2} b t_{3}\right)$ baldL $t_{1} a\left(R\left(B t_{2} b t_{3}\right) c t_{4}\right)=$ $R\left(B t_{1} a t_{2}\right) b\left(b a l i R t_{3} c\left(\right.\right.$ paint Red $\left.\left.t_{4}\right)\right)$ baldL t_{1} a $t_{2}=R t_{1} a t_{2}$

Deletion proof

After a number of lemmas:

```
\invh t; invc t\rrbracket
\Longrightarrow \mp@code { i n v h } ( \text { del x t)^}
            (color t= Red }
            bh(del x t) = bh(t) ^ invc (del x t)) ^
    (color t = Black }
    bh(del x t) = bh(t) - 1 ^ invc2 (del x t))
\(r b t t \Longrightarrow r b t(\) delete \(x t)\)
```


Code and proof in CLRS

 werting 4 nade
The pmocedure The phacture

RB-Thanshlant(T, u, v)

Mie procedare R-TRAnsfuntr difter tran Thassplant in two ways. Firs,

 Weed fiee ur maved within the tre, and we kecp pack af the note x thut mover

 store the red-black properite:

кв-Diurn(te)


```
    x=z\mathrm{ _ngw}
```



```
    x-zhp
    cluc
```



```
    x-y.fight
    if.p%=2
    dse RB-TM.ANSL_LNT(T,y,y,Mght
        y.jigh =2-ny
```



```
        l.cog-z.kt
        Fop-p
|(a)
```

 adh line of Tren-Dnaxte within Rb-Dilerte (will the changer of erplacing

 \qquad

 Hat y lar mon lef chilid.)

 to point to the ripinal paxitan of y's puren, wen ifx $-T$.mil.

 1. No stax- -keighes in the uree hane changed.

If nose y wis hlack, three problenss may arise, which the call of RB-Daum-

Abstract

4.A mamex

Analysis

Whatis the numing lime of RH-Dererti? Sance the heiedt of a rea-black nee of
 tead to teminution affer perfimming a custant number of cotur changes nid at

Source of code

Insertion:
Okasaki's Purely Functional Data Structures
Deletion partly based on:
Stefan Kahrs. Red Black Trees with Types.
J. Functional Programming. 1996.
(8) Unbalanced BST
(9) Abstract Data Types
(10) 2-3 Trees
(11) Red-Black Trees
(12) More Search Trees
(13) Union, Intersection, Difference on BSTs
(14) Tries and Patricia Tries
(12) More Search Trees

AVL Trees
Weight-Balanced Trees
AA Trees
Scapegoat Trees

AVL Trees

[Adelson-Velskii \& Landis 62]

- Every node $\left\langle l_{,}, r\right\rangle$ must be balanced: $|h(l)-h(r)| \leq 1$
- Verified Isabelle implementation: HOL/Data_Structures/AVL_Set.thy
(12) More Search Trees

AVL Trees
Weight-Balanced Trees
AA Trees
Scapegoat Trees

Weight-Balanced Trees [Nievergelt \& Reingold 72,73]

- Parameter: balance factor $0<\alpha \leq 0.5$
- Every node $\left\langle l_{,}, r\right\rangle$ must be balanced:
$\alpha \leq|l|_{1} /\left(|l|_{1}+|r|_{1}\right) \leq 1-\alpha$
- Insertion and deletion: single and double rotations depending on subtle numeric conditions
- Nievergelt and Reingold incorrect
- Mistakes discovered and corrected by [Blum \& Mehlhorn 80] and [Hirai \& Yamamoto 2011]
- Verified implementation in Isabelle's Archive of Formal Proofs.
(12) More Search Trees

AVL Trees
Weight-Balanced Trees
AA Trees
Scapegoat Trees

AA trees

[Arne Andersson 93, Ragde 14]

- Simulation of 2-3 trees by binary trees $\left\langle t_{1}, a, t_{2}, b, t_{3}\right\rangle \rightsquigarrow\left\langle t_{1}, a,\left\langle t_{2}, b, t_{3}\right\rangle\right\rangle$
- Height field (or single bit) to distinguish single from double node
- Code short but opaque
- 4 bugs in delete in [Ragde 14]: non-linear pattern; going down wrong subtree; missing function call; off by 1

AA trees

[Arne Andersson 93, Ragde 14]

After corrections, the proofs:

- Code relies on tricky pre- and post-conditions that need to be found
- Structural invariant preservation requires most of the work
(12) More Search Trees

AVL Trees
Weight-Balanced Trees
AA Trees
Scapegoat Trees

Scapegoat trees

 [Anderson 89, Igal \& Rivest 93]

 [Anderson 89, Igal \& Rivest 93]}

Central idea:

Don't rebalance every time, Rebuild when the tree gets "too unbalanced"

- Tricky: amortized logarithmic complexity analysis
- Verified implementation in Isabelle's Archive of Formal Proofs.

(8) Unbalanced BST

(9) Abstract Data Types
(10) 2-3 Trees
(11) Red-Black Trees
(12) More Search Trees
(13) Union, Intersection, Difference on BSTs
(14) Tries and Patricia Tries

One by one (Union)

Let $c(x)=$ cost of adding 1 element to set of size x
Cost of adding m elements to a set of n elements:

$$
c(n)+\cdots+c(n+m-1)
$$

\Longrightarrow choose $m \leq n \Longrightarrow$ smaller into bigger
If $c(x)=\log _{2} x \Longrightarrow$
Cost $=O\left(m * \log _{2}(n+m)\right)=O\left(m * \log _{2} n\right)$
Similar for intersection and difference.

- We can do better than $O\left(m * \log _{2} n\right)$
- This section:

A parallel divide and conquer approach

- Cost: $\Theta\left(m * \log _{2}\left(\frac{n}{m}+1\right)\right)$
- Works for many kinds of balanced trees
- For ease of presentation: use concrete type tree

Uniform tree type

Red-Black trees, AVL trees, weight-balanced trees, etc can all be implemented with ' b-augmented trees:
('a×'b) tree
We work with this type of trees without committing to any particular kind of balancing schema.

Just join

Can synthesize all BST interface functions from just one function:

$$
\text { join l a } r \approx \operatorname{Node} l\left(a,{ }_{-}\right) r+\text { rebalance }
$$

Thus join determines the balancing schema

Just join

Given join :: tree $\Rightarrow{ }^{\prime} a \Rightarrow$ tree \Rightarrow tree (where tree abbreviates (${ }^{\prime} a, ' b$) tree), implement union $::$ tree \Rightarrow tree \Rightarrow tree inter $::$ tree \Rightarrow tree \Rightarrow tree diff $::$ tree \Rightarrow tree \Rightarrow tree
union $t_{1} t_{2}=$
(if $t_{1}=\langle \rangle$ then t_{2}
else if $t_{2}=\langle \rangle$ then t_{1}
else case t_{1} of

$$
\begin{aligned}
& \left\langle l_{1},(a, b), r_{1}\right\rangle \Rightarrow \\
& \text { let }\left(l_{2}, x, r_{2}\right)=\text { split } t_{2} a \text {; } \\
& l^{\prime}=\text { union } l_{1} l_{2} ; \\
& r^{\prime}=\text { union } r_{1} r_{2} \\
& \text { in join } \left.l^{\prime} \text { a } r^{\prime}\right)
\end{aligned}
$$

split $::$ tree $\Rightarrow{ }^{\prime} a \Rightarrow$ tree \times bool \times tree split \rangle _ $=(\langle \rangle$, False, $\langle \rangle)$
split $\langle l,(a, \quad$), $r\rangle x=$
(case comp x a of
$L T \Rightarrow$
let $\left(l_{1}, b, l_{2}\right)=\operatorname{split} l x$
in $\left(l_{1}, b\right.$, join l_{2} a r)
$E Q \Rightarrow(l, T r u e, r)$
$G T \Rightarrow$
let $\left(r_{1}, b, r_{2}\right)=$ split $r x$
in $\left(\right.$ join la $\left.r_{1}, b, r_{2}\right)$)
inter $t_{1} t_{2}=$
(if $t_{1}=\langle \rangle$ then \rangle
else if $t_{2}=\langle \rangle$ then \rangle
else case t_{1} of

$$
\begin{aligned}
& \left\langle l_{1},(a, x), r_{1}\right\rangle \Rightarrow \\
& \text { let }\left(l_{2}, b, r_{2}\right)=\text { split } t_{2} a \\
& l^{\prime}=\text { inter } l_{1} l_{2} ; \\
& r^{\prime}=\text { inter } r_{1} r_{2} \\
& \text { in if } b \text { then join } l^{\prime} a r^{\prime} \\
& \left.\quad \text { else join2 } l^{\prime} r^{\prime}\right)
\end{aligned}
$$

join2 $::$ tree \Rightarrow tree \Rightarrow tree
join2 $l\rangle=l$
join2 $l\langle v, v a, v b\rangle=$
(let $(x, y)=$ split_min $\langle v, v a, v b\rangle$ in join $l x y)$
split_min $::$ tree $\Rightarrow{ }^{\prime} a \times$ tree
split_min $\left\langle l,\left(a,,_{-}\right), r\right\rangle=$
(if $l=\langle \rangle$ then $(a, r$)
else let $\left(m, l^{\prime}\right)=$ split_min l in $\left.\left(m, j o i n l^{\prime} a r\right)\right)$
diff $t_{1} t_{2}=$
(if $t_{1}=\langle \rangle$ then \rangle
else if $t_{2}=\langle \rangle$ then t_{1} else case t_{2} of

$$
\begin{aligned}
& \left\langle l_{2},(a, b), r_{2}\right\rangle \Rightarrow \\
& \text { let }\left(l_{1}, x, r_{1}\right)=\text { split } t_{1} a ; \\
& \quad l^{\prime}=\text { diff } l_{1} l_{2} ; \\
& r^{\prime}=\text { diff } r_{1} r_{2} \\
& \text { in join2 } \left.l^{\prime} r^{\prime}\right)
\end{aligned}
$$

insert and delete

insert $x t=($ let $(l, b, r)=\operatorname{split} t x$ in join $l x r)$
delete $x t=($ let $(l, b, r)=\operatorname{split} t x$ in join2 $l r)$
(13) Union, Intersection, Difference on BSTs Correctness Join for Red-Black Trees

Specification of join and inv

- set_tree $($ join l a $r)=$ set_tree $l \cup\{a\} \cup$ set_tree r
- bst $\langle l,(a, b), r\rangle \Longrightarrow b s t(j o i n l a r)$

Also required: structural invariant inv:

- inv \rangle
- inv $\langle l,(a, b), r\rangle \Longrightarrow i n v l \wedge i n v r$
- $\llbracket i n v l ; i n v r \rrbracket \Longrightarrow i n v(j o i n ~ l a r)$

Locale context for def of union etc

Specification of union, inter, diff

ADT/Locale $\operatorname{Set} 2=$ extension of locale $S e t$ with

- union, inter, diff $::$ ' $s \Rightarrow$'s \Rightarrow 's
- 【invar $s_{1} ;$ invar $s_{2} \rrbracket$

$$
\Longrightarrow \operatorname{set}\left(\text { union } s_{1} s_{2}\right)=\text { set } s_{1} \cup \text { set } s_{2}
$$

- «invar $s_{1} ;$ invar $s_{2} \rrbracket \Longrightarrow \operatorname{invar}\left(\right.$ union $\left.s_{1} s_{2}\right)$
- ...inter ...
- ... diff ...

We focus on union.
See HOL/Data_Structures/Set_Specs.thy

Correctness lemmas for union etc code

In the context of join specification:

- bst $t_{2} \Longrightarrow$
set_tree $\left(\right.$ union $\left.t_{1} t_{2}\right)=$ set_tree $t_{1} \cup$ set_tree t_{2}
- $\llbracket b s t t_{1} ;$ bst $t_{2} \rrbracket \Longrightarrow b s t\left(u n i o n ~ t_{1} t_{2}\right)$
- $\llbracket i n v t_{1} ; i n v t_{2} \rrbracket \Longrightarrow i n v\left(\right.$ union $\left.t_{1} t_{2}\right)$

Proofs automatic (more complex for inter and diff)
Implementation of locale Set2:
interpretation Set2 where union $=$ union ... and set $=$ set_tree and invar $=(\lambda t$. bst $t \wedge i n v t)$

HOL/Data_Structures/ Set2_Join.thy

(13) Union, Intersection, Difference on BSTs

Correctness
Join for Red-Black Trees

join l a r - The idea

Assume l is "smaller" than r :

- Descend along the left spine of r until you find a subtree t of the same "size" as l.
- Replace t by $\langle l, a, t\rangle$.
- Rebalance on the way up.
join l x r $=$
(if bheight $r<$ bheight l
then paint Black (joinR lxr)
else if bheight $l<$ bheight r
then paint Black (joinL lxr) else Blxr)
joinL l x r $=$
(if bheight $r \leq b h e i g h t l$ then $R l x r$
else case r of

$$
\begin{aligned}
& \left\langle l^{\prime},\left(x^{\prime}, \text { Red }\right), r^{\prime}\right\rangle \Rightarrow R\left(\text { joinL } l x l^{\prime}\right) x^{\prime} r^{\prime} \\
& \left.\left\langle l^{\prime},\left(x^{\prime}, \text { Black }\right), r^{\prime}\right\rangle \Rightarrow \text { baliL }\left(\text { joinL } l x l^{\prime}\right) x^{\prime} r^{\prime}\right)
\end{aligned}
$$

Need to store black height in each node for logarithmic complexity

Thys/Set2_Join RBT.thy

Literature

The idea of "just join":
Stephen Adams. Efficient Sets - A Balancing Act.
J. Functional Programming, volume 3, number 4, 1993.

The precise analysis:
Guy E. Blelloch, D. Ferizovic, Y. Sun. Just Join for Parallel Ordered Sets. ACM Symposium on Parallelism in Algorithms and Architectures 2016.

(8) Unbalanced BST

(9) Abstract Data Types
(10) 2-3 Trees
(11) Red-Black Trees
(12) More Search Trees
(13) Union, Intersection, Difference on BSTs
(14) Tries and Patricia Tries

Trie

[Fredkin, CACM 1960]

Name: reTRIEval

- Tries are search trees indexed by lists
- Tries are tree-shaped DFAs

Example Trie

$\{a$, an, can, car, cat $\}$

(14) Tries and Patricia Tries Tries via Functions
Binary Tries and Patricia Tries

HOL/Data_Structures/ Trie_Fun.thy

Trie

datatype 'a trie $=N d$ bool (' $a \Rightarrow$ 'a trie option $)$

Function update notation:
$f(a:=b)=(\lambda x$. if $x=a$ then b else $f x)$
$f(a \mapsto b)=f(a:=$ Some $b)$

Next: Implementation of ADT Set

empty

empty $=N d$ False $\left(\lambda_{-}\right.$. None $)$

isin

isin $(N d b m)[]=b$
isin $(N d b m)(k \# x s)=($ case $m k$ of
None \Rightarrow False
\mid Some $t \Rightarrow$ isin $t x s)$

insert

insert [] (Nd b m) $=$ Nd True m
insert $(x \# x s)(N d b m)=$
let $s=$ case $m x$ of
None \Rightarrow empty
| Some $t \Rightarrow t$
in Nd $b(m(x \mapsto$ insert $x s s))$

delete

delete [] (Nd b m) $=$ Nd False m
delete $(x \# x s)(N d b m)=$
$N d b$ (case $m x$ of
None $\Rightarrow m$
\mid Some $t \Rightarrow m(x \mapsto$ delete $x s t))$
Does not shrink trie - exercise!

Correctness:

Abstraction function

> set $::^{\prime} a$ trie $\Rightarrow{ }^{\prime} a$ list set
> set $t=\{x s . i s i n ~ t x s\}$

Invariant is True

Correctness theorems

- set empty $=\{ \}$
- isin $t x s=(x s \in$ set $t)$
- set (insert xs $t)=$ set $t \cup\{x s\}$
- set $($ delete xs $t)=$ set $t-\{x s\}$

No lemmas required

Abstraction function via isin

$$
\text { set } t=\{x s . i \sin t x s\}
$$

- Trivial definition
- Reusing code (isin) may complicate proofs.
- Separate abstract mathematical definition may simplify proofs
Also possible for some other ADTs, e.g. for Map: lookup :: ' $t \Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ 'b option $)$
(14) Tries and Patricia Tries

Tries via Functions

Binary Tries and Patricia Tries

HOL/Data_Structures/ Tries_Binary.thy

Trie

datatype trie $=L f \mid N d$ bool $($ trie \times trie $)$

Auxiliary functions on pairs:
sel2 :: bool $\Rightarrow{ }^{\prime} a \times{ }^{\prime} a \Rightarrow{ }^{\prime} a$
sel2 $b\left(a_{1}, a_{2}\right)=\left(\right.$ if b then a_{2} else $\left.a_{1}\right)$
$\bmod 2::\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow$ bool $\Rightarrow{ }^{\prime} a \times{ }^{\prime} a \Rightarrow{ }^{\prime} a \times{ }^{\prime} a$ $\bmod 2 f b\left(a_{1}, a_{2}\right)=\left(\right.$ if b then $\left(a_{1}, f a_{2}\right)$ else $\left.\left(f a_{1}, a_{2}\right)\right)$

empty

$e m p t y=L f$

isin

isin Lf $k s=$ False
$i s i n(N d b l r) k s=($ case $k s$ of

$$
\stackrel{[] \Rightarrow b}{\stackrel{k}{k} \Rightarrow x \Rightarrow \sin (\operatorname{sel} 2 k l r) x)}
$$

insert

insert [] $L f=$ Nd True $(L f, L f)$
insert [] (Nd blr) $=$ Nd True lr
insert ($k \# k s$) Lf $=$
Nd False (mod2 (insert ks) $k(L f, L f))$
insert $(k \# k s)(N d b l r)=$
Nd b (mod2 (insert ks) klr)

delete

delete ks $L f=L f$
delete ks (Nd blr) =
case $k s$ of
[] \Rightarrow node False lr
$\mid k \# k s^{\prime} \Rightarrow$ node $b(\bmod 2($ delete $k s) k l r)$
Shrink trie if possible:
node $b l r=($ if $\neg b \wedge l r=(L f, L f)$ then $L f$ else $N d b l r)$

Correctness of implementation

Abstraction function:

$$
\text { set_trie } t=\{x s . \text { isin } t x s\}
$$

- isin (insert xs $t) y s=(x s=y s \vee i \sin t y s)$
\Longrightarrow set_trie (insert xs $t)=$ set_trie $t \cup\{x s\}$
- $i \sin ($ delete $x s t) y s=(x s \neq y s \wedge i s i n t y s)$
\Longrightarrow set_trie $($ delete $x s t)=$ set_trie $t-\{x s\}$

From tries to Patricia tries

Patricia trie

datatype trie $P=L f P$
NdP (bool list) bool (trie $P \times$ trie P)

$i \sin P$

isinP LfP ks = False
$i s i n P(N d P$ ps b lr) $k s=$
(let $n=$ length $p s$
in if $p s=$ take $n k s$
then case drop $n k s$ of
[]$\Rightarrow b$
$k \# k s^{\prime} \Rightarrow$ isinP $\left(\begin{array}{ll}\text { sel } 2 k l r) k s^{\prime}\end{array}\right.$
else False)

Splitting lists

split $x s$ ys $=\left(z s, x s^{\prime}, y s^{\prime}\right)$
iff $z s$ is the longest common prefix of $x s$ and $y s$
and $x s^{\prime} / y s^{\prime}$ is the remainder of $x s / y s$

insertP

insertP ks LfP $=N d P$ ks True $(L f P, L f P)$
insertP ks (NdP ps b lr) =
case split ks ps of
(qs, [], []) \Rightarrow NdP ps True lr
$\mid\left(q s,[], p \# p s^{\prime}\right) \Rightarrow$
let $t=N d P p s^{\prime} b l r$
in $N d P$ qs True (if p then $(L f P, t)$ else $(t, L f P)$)
$\mid\left(q s, k \# k s^{\prime},[]\right) \Rightarrow N d P \operatorname{ps} b\left(\bmod 2\left(\right.\right.$ insert $\left.\left.P k s^{\prime}\right) k l r\right)$
$\mid\left(q s, k \# k s^{\prime}, p \# p s^{\prime}\right) \Rightarrow$
let $t p=N d P p s^{\prime} b l r ; t k=N d P k s^{\prime} \operatorname{Tr} u e(L f P, L f P)$ in $N d P$ qs False (if k then $(t p, t k)$ else $(t k, t p)$)

deleteP

deleteP ks LfP $=L f P$
deleteP ks (NdP ps blr) $=$
(case split ks ps of
$\left(q s, k s^{\prime}, p \# p s^{\prime}\right) \Rightarrow N d P$ ps b lr \mid
$\left(q s, k \# k s^{\prime},[]\right) \Rightarrow$
node P ps $b\left(\bmod 2\left(\operatorname{deleteP} k s^{\prime}\right) k l r\right) \mid$
($q s,[],[]) \Rightarrow$ nodeP ps False lr)

Stepwise data refinement

View trieP as an implementation ("refinement") of trie

Type Abstraction function

$$
\begin{array}{cl}
\text { bool list set } & \\
\uparrow & \text { set_trie } \\
\text { trie } & \\
\uparrow & \text { abs_trieP } \\
\text { trieP } &
\end{array}
$$

\Longrightarrow Modular correctness proof of trieP

abs_trieP :: trieP \Rightarrow trie

abs_trieP $L f P=L f$
abs_trieP $(N d P$ ps b $(l, r))=$ prefix_trie ps (Nd b (abs_trieP l, abs_trieP r))
prefix_trie :: bool list \Rightarrow trie \Rightarrow trie

Correctness of trieP w.r.t. trie

- $\operatorname{isinP} t \mathrm{ks}=\operatorname{isin}\left(a b s _t r i e P t\right) k s$
- abs_trieP (insertP ks $t)=$ insert $k s\left(a b s _t r i e P ~ t\right) ~$
- abs_trieP (deleteP ks $t)=$ delete ks (abs_trieP $t)$
isin (prefix_trie ps t) ks =
(ps =take (length ps) ks \wedge isin $t($ drop (length ps) ks))
prefix_trie ks (Nd True $(L f, L f))=$ insert $k s L f$
insert ps (prefix_trie ps (Nd blr)) $=$ prefix_trie $p s($ Nd True lr)
insert ($k s$ @ $k s^{\prime}$) (prefix_trie kst) $=$ prefix_trie $k s\left(\right.$ insert $\left.k s^{\prime} t\right)$
prefix_trie ($p s$ @ qs) $t=$ prefix_trie ps $($ prefix_trie qs t)
split $k s p s=\left(q s, k s^{\prime}, p s^{\prime}\right) \Longrightarrow$
$k s=q s @ k s^{\prime} \wedge p s=q s @ p s^{\prime} \wedge\left(k s^{\prime} \neq[] \wedge p s^{\prime} \neq[] \longrightarrow h d k s^{\prime} \neq h d p s^{\prime}\right)$
(prefix_trie xs $t=L f)=(x s=[] \wedge t=L f)$
(abs_trieP $t=L f)=(t=L f P)$
delete xs $($ prefix_trie xs $(\operatorname{Nd} b(l, r)))=$
(if $(l, r)=(L f, L f)$ then $L f$ else prefix_trie xs (Nd False $(l, r))$)
delete (xs @ ys) (prefix_trie xs t) =
(if delete ys $t=L f$ then $L f$ else prefix_trie xs (delete ys t))

Correctness of trieP w.r.t. bool list set

Define set_trie $P=$ set_trie \circ abs_trie P
\Longrightarrow Overall correctness by trivial composition of correctness theorems for trie and trie P

Example:
set_trieP $($ insert P xs $t)=$ set_trie $P t \cup\{x s\}$ follows directly from
abs_trie $P($ insert P ks $t)=$ insert ks $($ abs_trieP $t)$ set_trie (insert xs t) $=$ set_trie $t \cup\{x s\}$

Chapter 9

Priority Queues

(15) Priority Queues

(16) Leftist Heap
(17) Priority Queue via Braun Tree

18 Binomial Heap
(10) Skew Binomial Heap

(15) Priority Queues

(16) Leftist Heap
(17) Priority Queue via Braun Tree

18 Binomial Heap
(19) Skew Binomial Heap

Priority queue informally

Collection of elements with priorities

Operations:

- empty
- emptiness test
- insert
- get element with minimal priority
- delete element with minimal priority

We focus on the priorities:
element $=$ priority

Priority queues are multisets

The same element can be contained multiple times in a priority queue

The abstract view of a priority queue is a multiset

Interface of implementation

The type of elements (= priorities) ' a is a linear order
An implementation of a priority queue of elements of type ' a must provide

- An implementation type ${ }^{\prime} q$
- empty $::$ ' q
- is_empty :: ' $q \Rightarrow$ bool
- insert $::{ }^{\prime} a{ }^{\prime} q \Rightarrow{ }^{\prime} q$
- get_min $::{ }^{\prime} q \Rightarrow{ }^{\prime} a$
- del_min :: ' $q \Rightarrow{ }^{\prime} q$

More operations

- merge :: ' $q \Rightarrow{ }^{\prime} q \Rightarrow{ }^{\prime} q$

Often provided

- decrease key/priority

A bit tricky in functional setting

Correctness of implementation

A priority queue represents a multiset of priorities.
Correctness proof requires:
Abstraction function: mset :: ' $q \Rightarrow$ 'a multiset
Invariant: invar $::$ ' $q \Rightarrow$ bool

Correctness of implementation

Must prove invar $q \Longrightarrow$
mset empty $=\{\#\}$
is_empty $q=($ mset $q=\{\#\})$
mset $($ insert $x q)=\operatorname{mset} q+\{\# x \#\}$
mset $q \neq\{\#\} \Longrightarrow$ get_min $q=$ Min_mset $(\operatorname{mset} q)$
mset $q \neq\{\#\} \Longrightarrow$
$\operatorname{mset}(\operatorname{del} \min q)=\operatorname{mset} q-\{\#$ get_min $q \#\}$
invar empty
invar (insert x q)
invar (del_min q)

Terminology

A binary tree is a heap if for every subtree the root is \leq all elements in that subtree.

```
\[
\text { heap }\rangle=\operatorname{Tr} u e
\]
\[
\text { heap }\langle l, m, r\rangle=
\]
\[
((\forall x \in \text { set_tree } l \cup \text { set_tree } r . m \leq x) \wedge
\]
\[
\text { heap } l \wedge \text { heap } r \text { ) }
\]
```

The term "heap" is frequently used synonymously with "priority queue".

Priority queue via heap

- empty $=\langle \rangle$
- is_empty $h=(h=\langle \rangle)$
- get_min $\left\langle-, a,{ }_{-}\right\rangle=a$
- Assume we have merge
- insert a $t=$ merge $\langle\rangle, a,\langle \rangle\rangle t$
- del_min $\langle l, a, r\rangle=$ merge $l r$

Priority queue via heap

A naive merge:

$$
\begin{aligned}
& \text { merge } t_{1} t_{2}=\left(\text { case }\left(t_{1}, t_{2}\right)\right. \text { of } \\
& \quad\left(\rangle,-) \Rightarrow t_{2}\right. \\
& (-,\langle \rangle) \Rightarrow t_{1} \\
& \left(\left\langle l_{1}, a_{1}, r_{1}\right\rangle,\left\langle l_{2}, a_{2}, r_{2}\right\rangle\right) \Rightarrow \\
& \quad \text { if } a_{1} \leq a_{2} \text { then }\left\langle\text { merge } l_{1} r_{1}, a_{1}, t_{2}\right\rangle \\
& \quad \text { else }\left\langle t_{1}, a_{2}, \text { merge } l_{2} r_{2}\right\rangle
\end{aligned}
$$

Challenge: how to maintain some kind of balance

(15) Priority Queues

(16) Leftist Heap

(17) Priority Queue via Braun Tree

18 Binomial Heap
(19) Skew Binomial Heap

HOL/Data_Structures/ Leftist_Heap.thy

Leftist tree informally

In a leftist tree, the minimum height of every left child is \geq the minimum height of its right sibling.
\Longrightarrow m.h. = length of right spine

Merge descends along the right spine.
Thus m.h. bounds number of steps.
If m.h. of right child gets too large: swap with left child.

Implementation type

type_synonym 'a lheap $=\left({ }^{\prime} a \times n a t\right)$ tree
Abstraction function:
mset_tree :: 'a lheap \Rightarrow 'a multiset
mset_tree $\rangle=\{\#\}$
mset_tree $\left\langle l,\left(a,,_{-}\right), r\right\rangle=$
$\{\# a \#\}+$ mset_tree $l+$ mset_tree r

Leftist tree

ltree :: 'a lheap \Rightarrow bool
ltree $\rangle=$ True
ltree $\langle l,(-, n), r\rangle=$
$(m h(r) \leq m h(l) \wedge n=m h(r)+1 \wedge l$ tree $l \wedge$ ltree $r)$
mht : : 'a lheap \Rightarrow nat
$m h t\rangle=0$
$m h t\left\langle_{-},(-, n),{ }_{-}\right\rangle=n$

Leftist heap invariant

$$
\text { invar } h=(\text { heap } h \wedge \text { ltree } h)
$$

merge

Principle: descend on the right
merge $\rangle t=t$
merge $t\rangle=t$
$\operatorname{merge}\left(\left\langle l_{1},\left(a_{1},,_{-}\right), r_{1}\right\rangle=: t_{1}\right)\left(\left\langle l_{2},\left(a_{2},-\right), r_{2}\right\rangle=: t_{2}\right)=$
(if $a_{1} \leq a_{2}$ then node $l_{1} a_{1}$ (merge $r_{1} t_{2}$)
else node $l_{2} a_{2}\left(\right.$ merge $\left.t_{1} r_{2}\right)$)
node : : 'a lheap $\Rightarrow{ }^{\prime} a \Rightarrow$ 'a lheap \Rightarrow 'a lheap
node l a $r=$
(let $m h l=m h t l ; m h r=m h t r$
in if $m h r \leq m h l$ then $\langle l,(a, m h r+1), r\rangle$ else $\langle r,(a, m h l+1), l\rangle)$

merge

merge $\left(\left\langle l_{1},\left(a_{1}, n_{1}\right), r_{1}\right\rangle=: t_{1}\right)$
$\left(\left\langle l_{2},\left(a_{2}, n_{2}\right), r_{2}\right\rangle=: t_{2}\right)=$
(if $a_{1} \leq a_{2}$ then node $l_{1} a_{1}$ (merge $r_{1} t_{2}$) else node $l_{2} a_{2}$ (merge $\left.t_{1} r_{2}\right)$)

Function merge terminates because decreases with every recursive call.

Functional correctness proofs

including preservation of invar

Straightforward

Logarithmic complexity

Correlation of rank and size:
Lemma $2^{m h(t)} \leq|t|_{1}$
Complexity measures T_merge, T_insert T_del_min: count calls of merge.
Lemma \llbracket ltree l; ltree r】
\Longrightarrow T_merge $l r \leq m h(l)+m h(r)+1$
Corollary \llbracket ltree l; ltree $r \rrbracket$
\Longrightarrow T_merge $l r \leq \log _{2}|l|_{1}+\log _{2}|r|_{1}+1$
Corollary
ltree $t \Longrightarrow$ T_insert $x t \leq \log _{2}|t|_{1}+3$
Corollary
ltree $t \Longrightarrow$ T_del_min $t \leq 2 * \log _{2}|t|_{1}+1$

Can we avoid the height info in each node?

(15) Priority Queues

10 Leftist Heap

(17) Priority Queue via Braun Tree

18 Binomial Heap
(19) Skew Binomial Heap

Archive of Formal Proofs

https://www.isa-afp.org/entries/Priority_ Queue_Braun.shtml

What is a Braun tree?

braun :: 'a tree \Rightarrow bool
braun $\rangle=$ True
braun $\langle l, x, r\rangle=$
$((|l|=|r| \vee|l|=|r|+1) \wedge$ braun $l \wedge$ braun $r)$
1

Lemma braun $t \Longrightarrow 2^{h(t)} \leq 2 *|t|+1$

Idea of invariant maintenance

braun $\rangle=$ True
braun $\langle l, x, r\rangle=$
$((|l|=|r| \vee|l|=|r|+1) \wedge$ braun $l \wedge$ braun $r)$
Let $t=\langle l, x, r\rangle$. Assume braun t
Add element: to r, then swap subtrees: $t^{\prime}=\left\langle r^{\prime}, x, l\right\rangle$
To prove braun $t^{\prime}:|l| \leq\left|r^{\prime}\right| \wedge\left|r^{\prime}\right| \leq|l|+1$
Delete element: from l, then swap subtrees: $t^{\prime}=\left\langle r, x, l^{\prime}\right\rangle$ To prove braun $t^{\prime}:\left|l^{\prime}\right| \leq|r| \wedge|r| \leq\left|l^{\prime}\right|+1$

Priority queue implementation

Implementation type: 'a tree
Invariants: heap and braun

No merge - insert and del_min defined explicitly

insert

insert $:: ~ ' a \Rightarrow{ }^{\prime} a$ tree $\Rightarrow{ }^{\prime} a$ tree
insert $a\rangle=\langle\langle \rangle, a,\langle \rangle\rangle$
insert a $\langle l, x, r\rangle=$
(if $a<x$ then \langle insert $x r, a, l\rangle$ else \langle insert $a r, x, l\rangle$)
Correctness and preservation of invariant straightforward.

del_min

del_min :: 'a tree \Rightarrow 'a tree
del_min $\rangle=\langle \rangle$
del_min $\langle\rangle, x, r\rangle=\langle \rangle$
del_min $\langle l, x, r\rangle=$
(let $\left(y, l^{\prime}\right)=$ del_left l in sift_down $\left.r y l^{\prime}\right)$
(1) Delete leftmost element y
(2) Sift y from the root down

Reminiscent of heapsort, but not quite ...

del_left

del_left :: ' a tree $\Rightarrow{ }^{\prime} a \times$ 'a tree del_left $\langle\rangle, x, r\rangle=(x, r)$
del_left $\langle l, x, r\rangle=$
(let $\left(y, l^{\prime}\right)=$ del_left l in $\left.(y,\langle r, x, l\rangle)\right)$

sift_down

sift_down :: 'a tree $\Rightarrow{ }^{\prime} a \Rightarrow$ ' a tree \Rightarrow ' a tree
sift_down $\left\rangle a_{-}=\langle\langle \rangle, a,\langle \rangle\rangle\right.$
sift_down $\left\langle\left\rangle, x, _\right\rangle a\rangle=\right.$
(if $a \leq x$ then $\langle\langle\rangle, x,\langle \rangle\rangle, a,\langle \rangle\rangle$
else $\langle\langle\rangle, a,\langle \rangle\rangle, x,\langle \rangle\rangle)$
sift_down $\left(\left\langle l_{1}, x_{1}, r_{1}\right\rangle=: t_{1}\right) a\left(\left\langle l_{2}, x_{2}, r_{2}\right\rangle=: t_{2}\right)=$
if $a \leq x_{1} \wedge a \leq x_{2}$ then $\left\langle t_{1}, a, t_{2}\right\rangle$
else if $x_{1} \leq x_{2}$ then $\left\langle\right.$ sift_down l_{1} a $\left.r_{1}, x_{1}, t_{2}\right\rangle$ else $\left\langle t_{1}, x_{2}\right.$, sift_down l_{2} a $\left.r_{2}\right\rangle$

Maintains braun

Functional correctness proofs for del_min

Many lemmas, mostly straightforward

Logarithmic complexity

Running time of insert, del_left and sift_down (and therefore del_min) bounded by height

Remember: braun $t \Longrightarrow 2^{h(t)} \leq 2 *|t|+1$

Above running times logarithmic in size

Source of code

Based on code from
L.C. Paulson. ML for the Working Programmer. 1996 based on code from Chris Okasaki.

Sorting with priority queue

$p q[]=$ empty
$p q(x \# x s)=$ insert $x(p q x s)$
mins $q=$
(if is_empty q then []
else get_min $\left.h \# \operatorname{mins}\left(d e l _m i n ~ h\right)\right)$
sort $p q=$ mins $\circ p q$
Complexity of sort: $O(n \log n)$
if all priority queue functions have complexity $O(\log n)$

(15) Priority Queues

10 Leftist Heap

(17) Priority Queue via Braun Tree

18 Binomial Heap
(19) Skew Binomial Heap

HOL/Data_Structures/ Binomial_Heap.thy

Numerical method

Idea: only use trees t_{i} of size 2^{i}
Example
To store (in binary) 11001 elements: $\left[t_{0}, 0,0, t_{3}, t_{4}\right]$
Merge \approx addition with carry
Needs function to combine two trees of size 2^{i} into one tree of size 2^{i+1}

Binomial tree

datatype ' a tree $=$
Node (rank: nat) (root: 'a) ('a tree list)
Invariant: Node of rank r has children $\left[t_{r-1}, \ldots, t_{0}\right.$] of ranks $[r-1, \ldots, 0]$
btree (Node r xts) $=$
$((\forall t \in$ set $t s$. btree $t) \wedge$ map rank $t s=\operatorname{rev}[0 . .<r])$
Lemma
btree $t \Longrightarrow|t|=2^{\text {rank } t}$

Combining two trees

How to combine two trees of rank i into one tree of rank $i+1$
link (Node r $x_{1} t s_{1}=: t_{1}$) (Node $\left.r^{\prime} x_{2} t s_{2}=: t_{2}\right)=$ (if $x_{1} \leq x_{2}$ then Node $(r+1) x_{1}\left(t_{2} \# t s_{1}\right)$ else $\left.\operatorname{Node}(r+1) x_{2}\left(t_{1} \# t s_{2}\right)\right)$

Binomial heap

Use sparse representation for binary numbers: $\left[t_{0}, 0,0, t_{3}, t_{4}\right]$ represented as $\left[\left(0, t_{0}\right),\left(3, t_{3}\right),\left(4, t_{4}\right)\right]$
type_synonym 'a heap $=$ 'a tree list
Remember: tree contains rank
Invariant:
invar ts $=$
$((\forall t \in$ set t s. bheap $t) \wedge$ sorted_wrt $(<)($ map rank $t s))$
bheap $t=($ btree $t \wedge$ heap $t)$
heap $($ Node $-x t s)=(\forall t \in$ set $t s$. heap $t \wedge x \leq \operatorname{root} t)$

Inserting a tree into a heap

Intuition: propagate a carry
Precondition:
Rank of inserted tree \leq ranks of trees in heap
ins_tree $t[]=[t]$
ins_tree $t_{1}\left(t_{2} \# t s\right)=$
(if rank $t_{1}<\operatorname{rank} t_{2}$ then $t_{1} \# t_{2} \# t s$
else ins_tree $\left.\left(\operatorname{link} t_{1} t_{2}\right) t s\right)$

merge

merge $t s_{1}[]=t s_{1}$
merge [] $t s_{2}=t s_{2}$
merge $\left(t_{1} \# t s_{1}=: h_{1}\right)\left(t_{2} \# t s_{2}=: h_{2}\right)=$ (if rank $t_{1}<$ rank t_{2} then $t_{1} \#$ merge $t s_{1} h_{2}$ else if rank $t_{2}<$ rank t_{1} then $t_{2} \#$ merge $h_{1} t s_{2}$ else ins_tree $\left(\operatorname{link} t_{1} t_{2}\right)\left(\right.$ merge $\left.\left.t s_{1} t s_{2}\right)\right)$

Intuition: Addition of binary numbers
Note: Handling of carry after recursive call

Get/delete minimum element

All trees are min-heaps.
Smallest element may be any root node:
$t s \neq[] \Longrightarrow$ get_min $t s=\operatorname{Min}(\operatorname{set}(\operatorname{map}$ root $t s))$
Similar:
get_min_rest $::$ 'a tree list \Rightarrow 'a tree \times 'a tree list
Returns tree with minimal root, and remaining trees
del_min $t s=$
(case get_min_rest ts of
(Node rxts,$\left.t s_{2}\right) \Rightarrow$ merge $\left(\right.$ rev $\left.\left.t s_{1}\right) t s_{2}\right)$
Why rev? Rank decreasing in $t s_{1}$ but increasing in $t s_{2}$

Complexity

Recall: btree $t \Longrightarrow|t|=2^{\text {rank } t}$
\Longrightarrow length of heap logarithmic in number of elements:
invar $t s \Longrightarrow$ length $t s \leq \log _{2}(|t s|+1)$
Complexity of operations: linear in length of heap
Proofs straightforward?

Complexity of merge

merge $\left(t_{1} \# t s_{1}=: h_{1}\right)\left(t_{2} \# t s_{2}=: h_{2}\right)=$ (if rank $t_{1}<$ rank t_{2} then $t_{1} \#$ merge $t_{1} h_{2}$ else if rank $t_{2}<\operatorname{rank} t_{1}$ then $t_{2} \#$ merge $h_{1} t s_{2}$ else ins_tree (link $t_{1} t_{2}$) (merge $\left.t s_{1} t s_{2}\right)$)

Complexity of ins_tree: T_ins_tree t ts \leq length $t s+1$ A call merge $t_{1} t_{2}$ (where length $t s_{1}=$ length $t s_{2}=n$) can lead to calls of ins_tree on lists of length $1, \ldots, n$.
$\sum \in O\left(n^{2}\right)$

Complexity of merge

merge $\left(t_{1} \# t s_{1}=: h_{1}\right)\left(t_{2} \# t s_{2}=: h_{2}\right)=$ (if rank $t_{1}<$ rank t_{2} then $t_{1} \#$ merge $t_{1} h_{2}$
else if $\operatorname{rank} t_{2}<\operatorname{rank} t_{1}$ then $t_{2} \#$ merge $h_{1} t s_{2}$ else ins_tree (link $\left.t_{1} t_{2}\right)\left(\right.$ merge $\left.t s_{1} t s_{2}\right)$)

Relate time and length of input/output:
T_ins_tree t ts + length (ins_tree t ts) $=2+$ length ts
T_merge $t s_{1} t s_{2}+$ length (merge $t s_{1} t s_{2}$)
$\leq 2 *\left(\right.$ length $t s_{1}+$ length $\left.t s_{2}\right)+1$
Yields desired linear bound!

Sources

The inventor of the binomial heap:
Jean Vuillemin.
A Data Structure for Manipulating Priority Queues. CACM, 1978.

The functional version:
Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

(15) Priority Queues

(16) Leftist Heap

(17) Priority Queue via Braun Tree

18 Binomial Heap
(10) Skew Binomial Heap

Priority queues so far

insert, del_min (and merge)
have logarithmic complexity

Skew Binomial Heap

Similar to binomial heap, but involving also skew binary numbers:
$d_{1} \ldots d_{n}$ represents $\sum_{i=1}^{n} d_{i} *\left(2^{i+1}-1\right)$
where $d_{i} \in\{0,1,2\}$

Complexity

Skew binomial heap:

$$
\begin{gathered}
\text { insert in time } O(1) \\
\text { del_min and merge still } O(\log n)
\end{gathered}
$$

Fibonacci heap (imperative!):

$$
\begin{aligned}
& \text { insert and merge in time } O(1) \\
& \text { del_min still } O(\log n)
\end{aligned}
$$

Every operation in time $O(1)$?

Puzzle

Design a functional queue with (worst case) constant time $e n q$ and $d e q$ functions

Chapter 10

Amortized Complexity

20 Amortized Complexity

(1) Hood Melville Queue

22 Skew Heap
23 Splay Tree
24 Pairing Heap
(55) More Verified Data Structures and Algorithms (in Isabelle/HOL)

20 Amortized Complexity

(1) Hood Melville Queue

22 Skew Heap
23 Splay Tree
(24) Pairing Heap
(5) More Verified Data Structures and Algorithms (in Isabelle/HOL)

10 Amortized Complexity

 MotivationFormalization Simple Classical Examples

Example

n increments of a binary counter starting with 0

- WCC of one increment? $O\left(\log _{2} n\right)$
- WCC of n increments? $O\left(n * \log _{2} n\right)$
- $O\left(n * \log _{2} n\right)$ is too pessimistic!
- Every second increment is cheap and compensates for the more expensive increments
- Fact: WCC of n increments is $O(n)$

WCC = worst case complexity

The problem

WCC of individual operations may lead to overestimation of
WCC of sequences of operations

Amortized analysis

Idea:
Try to determine the average cost of each operation (in the worst case!)
Use cheap operations to pay for expensive ones
Method:

- Cheap operations pay extra (into a "bank account"), making them more expensive
- Expensive operations withdraw money from the account, making them cheaper

Bank account $=$ Potential

- The potential ("credit") is implicitly "stored" in the data structure.
- Potential Φ :: data-structure \Rightarrow non-neg. number tells us how much credit is stored in a data structure
- Increase in potential $=$ deposit to pay for later expensive operation
- Decrease in potential = withdrawal to pay for expensive operation

Back to example: counter

Increment:

- Actual cost: 1 for each bit flip
- Bank transaction:
- pay in 1 for final $0 \rightarrow 1$ flip
- take out 1 for each $1 \rightarrow 0$ flip
\Longrightarrow increment has amortized cost $2=1+1$
Formalization via potential:
Φ counter $=$ the number of 1 's in counter

10 Amortized Complexity

Motivation

Formalization

Simple Classical Examples

Data structure

Given an implementation:

- Type τ
- Operation(s) $f:: \tau \Rightarrow \tau$
(may have additional parameters)
- Initial value: init $:: \tau$
(function "empty")
Needed for complexity analysis:
- Time/cost: $T_{-}:: \tau \Rightarrow$ num
($n u m=$ some numeric type nat may be inconvenient)
- Potential $\Phi:: \tau \Rightarrow$ num (creative spark!)

Need to prove: $\Phi s \geq 0$ and Φ init $=0$

Amortized and real cost

Sequence of operations: f_{1}, \ldots, f_{n}
Sequence of states:

$$
s_{0}:=\text { init, } s_{1}:=f_{1} s_{0}, \ldots, s_{n}:=f_{n} s_{n-1}
$$

Amortized cost $:=$ real cost + potential difference

$$
A_{i+1}:=T_{-} f_{i+1} s_{i}+\Phi s_{i+1}-\Phi s_{i}
$$

Sum of amortized costs \geq sum of real costs

$$
\begin{aligned}
\sum_{i=1}^{n} A_{i} & =\sum_{i=1}^{n}\left(T_{-} f_{i} s_{i-1}+\Phi s_{i}-\Phi s_{i-1}\right) \\
& =\left(\sum_{i=1}^{n} T_{-} f_{i} s_{i-1}\right)+\Phi s_{n}-\Phi \text { init } \\
& \geq \sum_{i=1}^{n} T_{-} f_{i} s_{i-1}
\end{aligned}
$$

Verification of amortized cost

For each operation f : provide an upper bound for its amortized cost

$$
A_{-} f:: \tau \Rightarrow \text { num }
$$

and prove

$$
T_{-} f s+\Phi(f s)-\Phi s \leq A_{-} f s
$$

Back to example: counter

incr :: bool list \Rightarrow bool list
incr []$=[$ True $]$
incr (False \# bs) $=$ True \# bs
incr $($ True $\# b s)=$ False \# incr bs
init $=[]$
$\Phi b s=$ length (filter id bs)
Lemma
T incr $b s+\Phi($ incr $b s)-\Phi b s=2$
Proof by induction

Proof obligation summary

- $\Phi s \geq 0$
- Φ init $=0$
- For every operation $f:: \tau \Rightarrow \ldots \Rightarrow \tau$:

$$
T_{-} f s \bar{x}+\Phi(f s \bar{x})-\Phi s \leq A_{-} f s \bar{x}
$$

If the data structure has an invariant invar: assume precondition invar s

If f takes 2 arguments of type τ :
$T_{-} f s_{1} s_{2} \bar{x}+\Phi\left(f s_{1} s_{2} \bar{x}\right)-\Phi s_{1}-\Phi s_{2} \leq A_{-} f s_{1} s_{2} \bar{x}$

Warning: real time

Amortized analysis unsuitable for real time applications:
Real running time for individual calls may be much worse than amortized time

Warning: single threaded

Amortized analysis is only correct for single threaded uses of the data structure.
Single threaded $=$ no value is used more than once
Otherwise:

$$
\text { let } \begin{aligned}
& \text { counter }=0 ; \\
& \text { bad }=\text { increment counter } 2^{n}-1 \text { times; } \\
&-=\text { incr bad; } \\
&-=\text { incr bad; } \\
&-=\text { incr bad; }
\end{aligned}
$$

Warning: observer functions

Observer function: does not modify data structure
\Longrightarrow Potential difference $=0$
\Longrightarrow amortized cost $=$ real cost
\Longrightarrow Must analyze WCC of observer functions
This makes sense because
Observer functions do not consume their arguments!
Legal: let bad $=$ create unbalanced data structure with high potential;

$$
\begin{aligned}
-\quad & \text { observer bad; } \\
& =\text { observer bad; }
\end{aligned}
$$

10 Amortized Complexity

Motivation
Formalization
Simple Classical Examples

Archive of Formal Proofs

https://www.isa-afp.org/entries/Amortized_ Complexity.shtml

20 Amortized Complexity

(1) Hood Melville Queue

22 Skew Heap

23 Splay Tree
24) Pairing Heap
(5) More Verified Data Structures and Algorithms (in Isabelle/HOL)

Fact

Can reverse $\left[x_{1}, \ldots, x_{n}\right]$ onto $y s$ in n steps:

$$
\begin{aligned}
& \left(\left[x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right], y s\right) \\
\rightarrow & \left(\left[x_{2}, x_{3}, \ldots, x_{n}\right], x_{1} \# y s\right) \\
\rightarrow & \left(\left[x_{3}, \ldots, x_{n}\right], x_{2} \# x_{1} \# y s\right) \\
\vdots & \left([], x_{n} \# \ldots \# x_{1} \# y s\right)
\end{aligned}
$$

The problem

with (front, rear) queues

- Only amortized linear complexity of enq and deq
- Problem: ([], rear) requires reversal of rear

Solution

- Do not wait for ([], rear)
- Compute new front front @ rev rear early and slowly
- In parallel with enq and deq calls
- Using a 'copy' of front and rear "shadow queue"

Solution

When to start? When \mid front $\mid=n$ and \mid rear $\mid=n+1$
Two phases:
front \xrightarrow{n} rev front

front @ rev rear
rear $\xrightarrow{n+1}$ rev rear
Must finish before original front is empty.
\Rightarrow Must take two steps in every enq and deq call

Complication

Calls of deq remove elements from the original front
Cannot easily remove them from the modified copy of front

Solution:

- Remember how many elements have been removed
- Better: how many elements are still valid

Example

```
enq: ([1.5], [11..6], Idle)
-> ([1..5], [],
->
deq: ([2..5], [],
->
enq: ([2..5], [12],
->
\rightarrow
deq: ([3..5], [12],
->
deq: ([4..5], [12],
>
\(\rightarrow \quad([4.11],[12], \quad\) Idle \()\)
```


The shadow queue

datatype ' a status $=$

```
Idle
    Rev (nat) ('a list) ('a list) ('a list) ('a list) |
    App (nat) ('a list) ('a list) |
    Done ('a list)
```


Shadow step

exec :: 'a status \Rightarrow ' a status
exec Idle $=$ Idle
exec (Rev ok $\left.(x \# f) f^{\prime}(y \# r) r^{\prime}\right)$
$=\operatorname{Rev}(o k+1) f\left(x \# f^{\prime}\right) r\left(y \# r^{\prime}\right)$
exec $\left(\right.$ Rev ok [] $\left.f^{\prime}[y] r^{\prime}\right)=\operatorname{App}$ ok $f^{\prime}\left(y \# r^{\prime}\right)$
$\operatorname{exec}\left(\operatorname{App}(o k+1)\left(x \# f^{\prime}\right) r^{\prime}\right)=\operatorname{App}$ ok $f^{\prime}\left(x \# r^{\prime}\right)$
exec $\left(\right.$ App $\left.0 f^{\prime} r^{\prime}\right)=$ Done r^{\prime}
exec $($ Done $v)=$ Done v

Dequeue from shadow queue

invalidate :: 'a status \Rightarrow 'a status
invalidate Idle $=$ Idle
invalidate $\left(\operatorname{Rev}\right.$ okff $\left.f^{\prime} r r^{\prime}\right)=\operatorname{Rev}(o k-1) f f^{\prime} r r^{\prime}$
invalidate $\left(\operatorname{App}(o k+1) f^{\prime} r^{\prime}\right)=A p p$ ok $f^{\prime} r^{\prime}$
invalidate $\left(\operatorname{App} 0 f^{\prime}\left(x \# r^{\prime}\right)\right)=$ Done r^{\prime}
invalidate $($ Done $v)=$ Done v

The whole queue

$\begin{aligned} \text { record 'a queue }= & \text { front }:: \text { 'a list } \\ & \text { lenf }:: \text { nat } \\ & \text { rear }::^{\prime} a \text { list } \\ & \text { lenr }:: \text { nat } \\ & \text { status }:: \text { 'a status }\end{aligned}$

$e n q$ and $d e q$

en $q x q=$
$\operatorname{check}(q \backslash$ rear $:=x \#$ rear q, lenr $:=\operatorname{lenr} q+1))$
$\operatorname{deq} q=$
check
(q (lenf $:=\operatorname{lenf} q-1$, front $:=t l($ front $q)$,
status $:=$ invalidate (status $q)$)
check $q=$
(if lenr $q \leq \operatorname{lenf} q$ then exec $2 q$
else let newstate $=$

$$
\text { Rev } 0(\text { front } q) \text { [] (rear q) [] }
$$

in exec 2

$$
\begin{aligned}
& (q(\text { lenf }:=\text { lenf } q+\text { lenr } q \\
& \quad \text { status }:=\text { newstate }, \\
& \quad \text { rear }:=[], \text { lenr }:=0 \mid))
\end{aligned}
$$

exec $2 q=$ (case exec (exec q) of Done $\mathrm{fr} \Rightarrow q($ status $=$ Idle, front $=f r) \mid$ newstatus $\Rightarrow q($ status $=$ newstatus $)$)

Correctness

The proof is

- easy because all functions are non-recursive (\Longrightarrow constant running time!)
- tricky because of invariant

status invariant

inv_st $\left(\right.$ Rev ok $\left.f f^{\prime} r r^{\prime}\right)=$
$\left(|f|+1=|r| \wedge\left|f^{\prime}\right|=\left|r^{\prime}\right| \wedge o k \leq\left|f^{\prime}\right|\right)$
inv_st $\left(\right.$ App ok $\left.f^{\prime} r^{\prime}\right)=\left(o k \leq\left|f^{\prime}\right| \wedge\left|f^{\prime}\right|<\left|r^{\prime}\right|\right)$
inv_st Idle $=$ True
inv_st (Done _) $=$ True

Queue invariant

invar $q=$
(lent $q=\mid$ front_list $q \mid \wedge$
lent $q=\mid$ rev $($ rear $q) \mid \wedge$
lent $q \leq \operatorname{lenf} q \wedge$
(case status q of
Rev ok $f f^{\prime} r r^{\prime} \Rightarrow$
$2 *$ lent $q \leq\left|f^{\prime}\right| \wedge$
$o k \neq 0 \wedge 2 *|f|+o k+2 \leq 2 * \mid$ front $q \mid$
| App ok $f r \Rightarrow$
$2 *$ lent $q \leq|r| \wedge o k+1 \leq 2 * \mid$ front $q \mid$
$\mid-\Rightarrow$ True $) \wedge$
$(\exists$ rest. front_list $q=$ front q @ rest $) \wedge$
$(\nexists$ fr. status $q=$ Done $\operatorname{fr}) \wedge$ inv_st $($ status $q))$

Queue invariant

front_list $q=$
(case status q of
Idle \Rightarrow front q
Rev ok $f f^{\prime} r r^{\prime} \Rightarrow$ rev (take ok f^{\prime}) @ f @ rev r @ r^{\prime}
App ok $f^{\prime} x \Rightarrow$ rev (take ok f') @ x
Done $f \Rightarrow f$)

Archive of Formal Proofs

https://www.isa-afp.org/entries/Hood_ Melville_Queue.shtml

Inventors

Robert Hood and Robert Melville. Real-Time Queue Operation in Pure LISP. Information Processing Letters, 1981.

Generalization

Real-time double-ended queue

Inventors: Hood (1982), Chuang and Goldberg (1993)
Verifiers: Toth and Nipkow (2023)
4500 lines of Isabelle (Hood-Melville queue: 800)

20 Amortized Complexity

(1) Hood Melville Queue

12 Skew Heap
23 Splay Tree
24) Pairing Heap
(5) More Verified Data Structures and Algorithms (in Isabelle/HOL)

Archive of Formal Proofs

https:
//www.isa-afp.org/entries/Skew_Heap.shtml

A skew heap is a self-adjusting heap (priority queue)
Functions insert, merge and del_min have amortized logarithmic complexity.

Functions insert and del_min are defined via merge

Implementation type

Ordinary binary trees
Invariant: heap

merge

merge $\rangle t=t$
merge $h\rangle=h$
Swap subtrees when descending:
merge $\left(\left\langle l_{1}, a_{1}, r_{1}\right\rangle=: t_{1}\right)\left(\left\langle l_{2}, a_{2}, r_{2}\right\rangle=: t_{2}\right)=$
(if $a_{1} \leq a_{2}$ then $\left\langle\right.$ merge $\left.t_{2} r_{1}, a_{1}, l_{1}\right\rangle$
else $\left\langle\right.$ merge $\left.t_{1} r_{2}, a_{2}, l_{2}\right\rangle$)
Function merge terminates because ...?

merge

Very similar to leftist heap but

- subtrees are always swapped
- no size information needed

Functional correctness proofs

Straightforward

22 Skew Heap

Amortized Analysis

Archive of Formal Proofs

https://www.isa-afp.org/theories/amortized_ complexity/\#Skew_Heap_Analysis

Logarithmic amortized complexity

Theorem

$$
\begin{aligned}
& \text { T_merge } t_{1} t_{2}+\Phi\left(\text { merge }_{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2} \\
& \leq 3 * \log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}\right)+1
\end{aligned}
$$

Towards the proof

Right heavy:
rh $l r=($ if $|l|<|r|$ then 1 else 0)
Number of right heavy nodes on left spine:
$\operatorname{lrh}\rangle=0$
$l r h\langle l,-, r\rangle=r h l r+l r h l$
Lemma
$2^{l r h t} \leq|t|+1$
Corollary
$\operatorname{lrh} t \leq \log _{2}|t|_{1}$

Towards the proof

Right heavy: rh $l r=($ if $|l|<|r|$ then 1 else 0)

Number of not right heavy nodes on right spine:
$r l h\rangle=0$
$r l h\langle l,-r\rangle=1-r h l r+r l h r$
Lemma
$2^{r l h} t \leq|t|+1$
Corollary
$r l h t \leq \log _{2}|t|_{1}$

Potential

The potential is the number of right heavy nodes:
$\Phi\rangle=0$
$\Phi\langle l, \quad, r\rangle=\Phi l+\Phi r+r h l r$

Lemma

T_merge $t_{1} t_{2}+\Phi\left(\right.$ merge $\left.t_{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2}$
$\leq \operatorname{lrh}\left(\right.$ merge $\left._{1} t_{2}\right)+r l h t_{1}+r l h t_{2}+1$
by(induction t1 t2 rule: merge.induct)(auto)

Node-Node case

Let $t_{1}=\left\langle l_{1}, a_{1}, r_{1}\right\rangle, t_{2}=\left\langle l_{2}, a_{2}, r_{2}\right\rangle$.
Case $a_{1} \leq a_{2}$. Let $m=$ merge $t_{2} r_{1}$
T_merge $t_{1} t_{2}+\Phi\left(\right.$ merge $\left.t_{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2}$
$=T_{-}$merge $t_{2} r_{1}+1+\Phi m+\Phi l_{1}+r h m l_{1}$ $-\Phi t_{1}-\Phi t_{2}$
$=T_{_}$merge $t_{2} r_{1}+1+\Phi m+r h m l_{1}$ $-\Phi r_{1}-r h l_{1} r_{1}-\Phi t_{2}$
$\leq \operatorname{lrh} m+r l h t_{2}+r l h r_{1}+r h m l_{1}+2-r h l_{1} r_{1}$ by IH
$=l r h m+r l h t_{2}+r l h t_{1}+r h m l_{1}+1$
$=\operatorname{lrh}\left(\right.$ merge $\left._{1} t_{2}\right)+r l h t_{1}+r l h t_{2}+1$

Main proof

T_merge $t_{1} t_{2}+\Phi\left(\right.$ merge $\left.t_{1} t_{2}\right)-\Phi t_{1}-\Phi t_{2}$
$\leq \operatorname{lrh}\left(\right.$ merge $\left.t_{1} t_{2}\right)+r l h t_{1}+r l h t_{2}+1$
$\leq \log _{2} \mid$ merge $\left.t_{1} t_{2}\right|_{1}+\log _{2}\left|t_{1}\right|_{1}+\log _{2}\left|t_{2}\right|_{1}+1$
$=\log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}-1\right)+\log _{2}\left|t_{1}\right|_{1}+\log _{2}\left|t_{2}\right|_{1}+1$
$\leq \log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}\right)+\log _{2}\left|t_{1}\right|_{1}+\log _{2}\left|t_{2}\right|_{1}+1$
$\leq \log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}\right)+2 * \log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}\right)+1$
because $\log _{2} x+\log _{2} y \leq 2 * \log _{2}(x+y)$ if $x, y>0$
$=3 * \log _{2}\left(\left|t_{1}\right|_{1}+\left|t_{2}\right|_{1}\right)+1$

insert and del_min

Easy consequences:

Lemma

$$
T _i n s e r t ~ a t+\Phi(\text { insert a } t)-\Phi t
$$

$$
\leq 3 * \log _{2}\left(|t|_{1}+2\right)+2
$$

Lemma

$$
\begin{aligned}
& \text { T_del_min } t+\Phi(\text { del_min } t)-\Phi t \\
& \leq 3 * \log _{2}\left(|t|_{1}+2\right)+2
\end{aligned}
$$

Sources

The inventors of skew heaps:
Daniel Sleator and Robert Tarjan.
Self-adjusting Heaps.
SIAM J. Computing, 1986.
The formalization is based on
Anne Kaldewaij and Berry Schoenmakers.
The Derivation of a Tighter Bound for Top-down Skew Heaps. Information Processing Letters, 1991.

20 Amortized Complexity

(1) Hood Melville Queue

22 Skew Heap

23 Splay Tree

24) Pairing Heap
(5) More Verified Data Structures and Algorithms (in Isabelle/HOL)

Archive of Formal Proofs

https:
//www.isa-afp.org/entries/Splay_Tree.shtml

A splay tree is a self-adjusting binary search tree.
Functions isin, insert and delete have amortized logarithmic complexity.

Definition (splay)
Become wider or more separated.
Example
The river splayed out into a delta.

23 Splay Tree Algorithm Amortized Analysis

Splay tree

Implementation type $=$ binary tree
Key operation splay a :
(1) Search for a ending up at x where $x=a$ or x is a leaf node.
(2) Move x to the root of the tree by rotations.

Derived operations isin/insert/delete a :
(1) splay a
(2) Perform isin/insert/delete action

Key ideas

Move to root

Double rotations

Zig-zig

Zig-zag

Zig-zig and zig-zag

Zig-zig \neq two single rotations

Zig-zag $=$ two single rotations

Functional definition

splay :: 'a \Rightarrow 'a tree \Rightarrow 'a tree

Zig-zig and zig-zag

$$
\begin{aligned}
& \llbracket x<b ; x<c ; A B \neq\langle \rangle \rrbracket \rrbracket \\
& \Longrightarrow \quad \text { splay } x\langle\langle A B, b, C\rangle, C \text { (case splay } x A B \text { of }
\end{aligned}
$$

$$
\Longrightarrow \text { splay } x\langle\langle A B, b, C\rangle, c, D\rangle=
$$

$\llbracket x<c ; c<a ; B C \neq\langle \rangle \rrbracket$
\Longrightarrow splay $c\langle\langle A, x, B C\rangle, a, D\rangle=$
(case splay c BC of

$$
\langle B, b, C\rangle \Rightarrow\langle\langle A, x, B\rangle, b,\langle C, a, D\rangle\rangle)
$$

Some base cases

$x<b \Longrightarrow$ splay $x\langle\langle A, x, B\rangle, b, C\rangle=\langle A, x,\langle B, b, C\rangle\rangle$
$x<a \Longrightarrow$
splay $x\langle\langle\rangle, a, A\rangle, b, B\rangle=\langle\langle \rangle, a,\langle A, b, B\rangle\rangle$

Functional correctness proofs

Automatic

23 Splay Tree
Algorithm
Amortized Analysis

Archive of Formal Proofs

https://www.isa-afp.org/theories/amortized_ complexity/\#Splay_Tree_Analysis

Potential

Sum of logarithms of the size of all nodes:
$\Phi\rangle=0$
$\Phi\langle l, a, r\rangle=\varphi\langle l, a, r\rangle+\Phi l+\Phi r$
where $\varphi t=\log _{2}(|t|+1)$
Amortized complexity of splay:
A_splay a $t=T _$splay $a t+\Phi($ splay $a t)-\Phi t$

Analysis of splay

Theorem

$\llbracket b s t t ;\langle l, a, r\rangle \in$ subtrees $t \rrbracket$
$\Longrightarrow A _$splay $a t \leq 3 *(\varphi t-\varphi\langle l, a, r\rangle)+1$
Corollary
$\llbracket b s t ~ t ; x \in$ set_tree $t \rrbracket$
$\Longrightarrow A _$splay $x t \leq 3 *(\varphi t-1)+1$
Corollary bst $t \Longrightarrow A$ _splay $x t \leq 3 * \varphi t+1$
Lemma
$\llbracket t \neq\langle \rangle ; b s t t \rrbracket$
$\Longrightarrow \exists x^{\prime}$ Eset_tree t.

$$
\begin{aligned}
& \text { splay } x^{\prime} t=\text { splay } x t \wedge \\
& T_{\text {_splay }} x^{\prime} t=T_{-} \text {splay } x t
\end{aligned}
$$

Definition

insert $x t=$
(if $t=\langle \rangle$ then $\langle\rangle, x,\langle \rangle\rangle$
else case splay $x t$ of
$\langle l, a, r\rangle \Rightarrow$ case $c m p x a$ of

$$
\begin{aligned}
& L T \Rightarrow\langle l, x,\langle\langle \rangle, a, r\rangle\rangle \\
& E Q \Rightarrow\langle l, a, r\rangle \\
& G T \Rightarrow\langle\langle l, a,\langle \rangle\rangle, x, r\rangle)
\end{aligned}
$$

Counting only the cost of splay:

Lemma

bst $t \Longrightarrow$
$T _$_insert $x t+\Phi($ insert $x t)-\Phi t \leq 4 * \varphi t+3$

delete

Definition

delete $x t=$
(if $t=\langle \rangle$ then \rangle
else case splay $x t$ of

$$
\langle l, a, r\rangle \Rightarrow
$$

$$
\text { if } x \neq a \text { then }\langle l, a, r\rangle
$$

$$
\text { else if } l=\langle \rangle \text { then } r
$$

else case splay_max l of

$$
\left.\left\langle l^{\prime}, m, r\right\rangle \Rightarrow\left\langle l^{\prime}, m, r\right\rangle\right)
$$

Lemma

hst $t \Longrightarrow$
T _delete $a t+\Phi($ delete $a t)-\Phi t \leq 6 * \varphi t+3$

Remember

Amortized analysis is only correct for single threaded uses of a data structure.

Otherwise:

$$
\text { let } \begin{aligned}
& \text { counter }=0 ; \\
& \text { bad }=\text { increment counter } 2^{n}-1 \text { times; } \\
&-=\text { incr bad; } \\
&-=\text { incr bad; } \\
&-=\text { incr bad; }
\end{aligned}
$$

$$
\text { isin }:: ' a \text { tree } \Rightarrow{ }^{\prime} a \Rightarrow \text { bool }
$$

Single threaded $\Longrightarrow i \sin t a$ eats up t
Otherwise:
let $\quad b a d=$ build unbalanced splay tree;
${ }_{-}=i \sin$ bad a;

- = isin bad a;
${ }_{-}=$isin bad a;

Solution 1:

isin :: 'a tree \Rightarrow ' $a \Rightarrow$ bool $\times{ }^{\prime}$ a tree

Observer function returns new data structure:
Definition
$i \sin t a=$
(let $t^{\prime}=$ splay $a t$ in (case t^{\prime} of

$$
\begin{aligned}
& \rangle \Rightarrow \text { False } \\
& \mid\langle l, x, r\rangle \Rightarrow a=x, \\
& \left.\left.t^{\prime}\right)\right\rangle
\end{aligned}
$$

Solution 2:

$$
\text { isin }=\text { splay; is_root }
$$

Client uses splay before calling is_root:
Definition
is_root : : ' $a \Rightarrow$ 'a tree \Rightarrow bool is_root $x t=$ (case t of

$$
\begin{aligned}
& \rangle \Rightarrow \text { False } \\
& \langle l, a, r\rangle \Rightarrow x=a)
\end{aligned}
$$

May call is_root _ t multiple times (with the same t) because is_root takes constant time
\Longrightarrow is_root_t does not eat up t

isin

Splay trees have an imperative flavour and are a bit awkward to use in a purely functional language

Sources

The inventors of splay trees:
Daniel Sleator and Robert Tarjan. Self-adjusting Binary Search Trees. J. ACM, 1985.

The formalization is based on
Berry Schoenmakers. A Systematic Analysis of Splaying. Information Processing Letters, 1993.

20 Amortized Complexity

(1) Hood Melville Queue

22 Skew Heap

23 Splay Tree
(34) Pairing Heap
25) More Verified Data Structures and Algorithms (in Isabelle/HOL)

Archive of Formal Proofs

https://www.isa-afp.org/entries/Pairing_ Heap.shtml

Implementation type

datatype 'a heap $=$ Empty $\mid H p$ 'a ('a heap list)
Heap invariant:
pheap Empty = True
pheap $\left(\begin{array}{ll}H p & x\end{array}\right.$ s $)=$
$(\forall h \in$ set $h s .(\forall y \in \#$ mset_heap $h . x \leq y) \wedge$ pheap $h)$
Also: Empty must only occur at the root

insert

insert $x h=\operatorname{merge}(H p x[]) h$
merge h Empty $=h$
merge Empty $h=h$
merge (Hp x hsx =: hx) (Hp y hsy =: hy) =
(if $x<y$ then $H p x(h y \# h s x)$ else $H p y(h x \# h s y)$)
Like function link for binomial heaps

del_min

del_min Empty = Empty del_min $(H p x h s)=$ pass $_{2}\left(\right.$ pass $\left._{1} h s\right)$
pass $_{1}\left(h_{1} \# h_{2} \# h s\right)=$ merge $_{1} h_{1} \#$ pass $_{1} h s$ pass $_{1} h s=h s$
pass $_{2}[]=$ Empty
pass $_{2}(h \# h s)=\operatorname{merge} h\left(\right.$ pass $\left._{2} h s\right)$

Fusing pass $_{2} \circ$ pass $_{1}$

merge_pairs []$=$ Empty
merge_pairs $[h]=h$
merge_pairs $\left(h_{1} \# h_{2} \# h s\right)=$
merge (merge $h_{1} h_{2}$) (merge_pairs $h s$)

Lemma

pass $_{2}\left(\right.$ pass $\left._{1} h s\right)=$ merge_pairs $h s$

Functional correctness proofs

Straightforward

24) Pairing Heap

Amortized Analysis

Analysis

Analysis easier (more uniform) if a pairing heap is viewed as a binary tree:
homs :: 'a heap list \Rightarrow 'a tree
homs [] $=\langle \rangle$
homs (Hp x hs $\left.s_{1} \# h s_{2}\right)=\left\langle h o m s h s_{1}, x\right.$, homs $\left.h s_{2}\right\rangle$
hom :: 'a heap \Rightarrow 'a tree
hom Empty $=\langle \rangle$
hom $(H p x h s)=\langle h o m s h s, x,\langle \rangle\rangle$
Potential function same as for splay trees

Verified:

The functions insert, del_min and merge all have $O\left(\log _{2} n\right)$ amortized complexity.

These bounds are not tight.
Better amortized bounds in the literature: insert $\in O(1)$, del_min $\in O\left(\log _{2} n\right)$, merge $\in O(1)$

The exact complexity is still open.

Archive of Formal Proofs

https://www.isa-afp.org/entries/Amortized_ Complexity.shtml

Sources

The inventors of the pairing heap:
M. Fredman, R. Sedgewick, D. Sleator and R. Tarjan.

The Pairing Heap: A New Form of Self-Adjusting Heap. Algorithmica, 1986.

The functional version:
Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

20 Amortized Complexity

(11) Hood Melville Queue
(22) Skew Heap

23 Splay Tree
(24) Pairing Heap
(55) More Verified Data Structures and Algorithms (in Isabelle/HOL)

More trees

Huffman Trees
Finger Trees
B Trees
k-d Trees
Optimal BSTs
Priority Search Trees
Treaps

Graph algorithms

Floyd-Warshall
Dijkstra Dijkstra
Maximum Network Flow
Strongly Connected Components
Kruskal Kruskal
Prim Prim

Algorithms

Knuth-Morris-Pratt
Median of Medians
Approximation Algorithms
FFT
Gauss-Jordan
Simplex
QR-Decomposition
Smith Normal Form
Probabilistic Primality Testing

Dynamic programming

- Start with recursive function
- Automatic translation to memoized version incl. correctness theorem
- Applications
- Optimal binary search tree
- Minimum edit distance
- Bellman-Ford (SSSP)
- CYK
- ...

Infrastructure

Refinement Frameworks by Lammich:
Abstract specification
\rightsquigarrow functional program
\rightsquigarrow imperative program
using a library of collection types

Model Checkers

- SPIN-like LTL Model Checker: Esparza, Lammich, Neumann, Nipkow, Schimpf, Smaus 2013
- SAT Certificate Checker:

Lammich 2017; beats unverified standard tool

Mostly in the Archive of Formal Proofs

