
Sa
mp
le
So
lut
ion

Chair of Logic and Verification
Department of Informatics
Technical University of Munich

Esolution
Place student sticker here

Note:
• During the attendance check a sticker containing a unique code will be put on this exam.
• This code contains a unique number that associates this exam with your registration

number.
• This number is printed both next to the code and to the signature field in the attendance

check list.

Funktionale Programmierung und Verifikation

Exam: IN0003 / Endterm Date: Saturday 8th February, 2020
Examiner: Prof. Tobias Nipkow, Ph.D. Time: 13:00 – 15:00

I

P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8

Working instructions
• This exam consists of 16 pages with a total of 8 problems.

Please make sure now that you received a complete copy of the exam.

• The total amount of achievable credits in this exam is 40 credits.

• Detaching pages from the exam is prohibited.

• Allowed resources:

– one handwritten sheet of A4 paper
– one analog dictionary English ↔ native language without annotations

• You may answer in German or English.

• Do not write with red or green colors nor use pencils.

• Physically turn off all electronic devices, put them into your bag, and close the bag.

Left room from to / Early submission at

– Page 1 / 16 –

Sa
mp
le
So
lut
ion

0

1

2

3

4

0

1

Problem 1 Type Inference (5 credits)

a) Determine the most general type of these expressions:

1. foldr (\x y -> y ++ x) [] (where foldr :: (a -> b -> b) -> b -> [a] -> b)

2. (\f g x -> g $ f $ x)

3. (:[1,2])

4. map head . map (\f -> f "hello")

b) Give a brief justification why these expressions do not type check.

1. if f x then x else "error" (where f :: (a -> Bool) and x :: Int)

2. 1 : 2 : f x (where f :: (a -> String) and x :: Int)

a)

1. [[a]] -> [a]

2. (a -> b) -> (b -> c) -> a -> c

3. Num a => a -> [a]

4. [String -> [a]] -> [a]

b)

1. Then branch returns Int, else branch String

2. f x :: String, there is no instance of Num for Char

– Page 2 / 16 –

Sa
mp
le
So
lut
ion

Problem 2 List Comprehension, Recursion, Higher Order Functions (6 credits)

Write a function halfEven :: [Int] -> [Int] -> [Int] that takes two lists xs and ys as input. The
function should compute the pairwise sums of the elements of xs and ys, i.e. for xs = [x0, x1, . . .] and
ys = [y0, y1, . . .] it computes [x0 + y0, x1 + y1, . . .]. Then, if xi + yi is even, the sum is halved. Otherwise, the
sum is removed from the list. An invocation of halfEven could look as follows:

halfEven [1, 2, 3, 4] [5, 3, 1] = [3, 2]
halfEven [1] [1,2,3] = [1]

Implement the function in three different ways:

a) As a list comprehension without using any higher-order functions or recursion.

halfEven xs ys = [(x + y) `div` 2 | (x, y) <- zip xs ys, even (x + y)]

b) As a recursive function with the help of pattern matching. You are not allowed to use list comprehensions
or higher-order functions.

halfEven [] _ = []
halfEven _ [] = []
halfEven (x:xs) (y:ys)

| even (x + y) = ((x + y) `div` 2) : halfEven xs ys
| otherwise = halfEven xs ys

c) Use higher-order functions (e.g. map, filter, etc.) but no recursion or list comprehensions.

halfEven xs ys = map (flip div 2) . filter even . map (uncurry (+)) $ zip xs ys

0

1

2

0

1

2

0

1

2

– Page 3 / 16 –

Sa
mp
le
So
lut
ion

0

1

0

1

2

3

4

Problem 3 Obligatory Logic Exercise (5 credits)

We define the following types:

• An atom is either F (falsity), T (truth), or a variable:

type Name = String
data Atom = F | T | V Name deriving (Eq , Show)

• A conjunction is an atom or the conjunction of two conjunctions:

data Conj = A Atom | Conj :&: Conj deriving (Eq , Show)

a) Write a function contains :: Conj -> Atom -> Bool such that contains c a returns True if and only
if a occurs in c.

contains :: Conj -> Atom -> Bool
contains (A a) a' = a == a'
contains (c1 :&: c2) a = contains c1 a || contains c2 a

b) Write a function implConj :: Conj -> Conj -> Bool such that implConj c1 c2 returns True if and
only if conjunction c1 logically implies conjunction c2. For example:

A F `implConj` c = True -- for any conjunction c
c `implConj` A T = True -- for any conjunction c
A (V "v") `implConj` A (V "v") = True
A (V "v") `implConj` A (V "v") :&: A (V "w") = False
A (V "w") :&: A (V "v") `implConj` A (V "v") :&: A (V "w") = True

implConj :: Conj -> Conj -> Bool
implConj c (A a) = a == T || contains c F || contains c a
implConj c (c1 :&: c2) = implConj c c1 && implConj c c2

-- Alternative solution
-- implAtom :: Conj -> Atom -> Bool
-- implAtom _ T = True
-- implAtom (A F) _ = True
-- implAtom (A a) a' = a == a'
-- implAtom (c1 :&: c2) a = implAtom c1 a || implAtom c2 a

-- implConj :: Conj -> Conj -> Bool
-- implConj c (A a) = implAtom c a
-- implConj c (c1 :&: c2) = implConj c c1 && implConj c c2

– Page 4 / 16 –

Sa
mp
le
So
lut
ion

Problem 4 Haskell Has Class (5.5 credits)

We define a typeclass of integer containers as follows:
class IntContainer c where

-- the empty container
empty :: c
-- insert an integer into a container
insert :: Integer -> c -> c

Moreover, we define an extension of integer containers called IntCollection as follows:
class IntContainer c => IntCollection c where

-- the number of integers in the collection
size :: c -> Integer
-- True if and only if the integer is a member of the collection
member :: Integer -> c -> Bool
-- extracts the smallest number in the collection
-- if such a number exists.
extractMin :: c -> Maybe Integer
-- "update f c" applies f to every element e of c.
-- If "f c" returns Nothing , the element is deleted;
-- otherwise , the new value is stored in place of e.
update :: (Integer -> Maybe Integer) -> c -> c
-- "partition p c" creates two collections (c1 ,c2) such that
-- c1 contains exactly those elements of c satisfying p and
-- c2 contains exactly those elements of c not satisfying p.
partition :: (Integer -> Bool) -> c -> (c,c)

Assume there is a type data C with a corresponding IntContainer instance. Moreover, assume you are
given the following function:

-- "fold f acc c" folds the function f along c (in no particular order)
-- using the start accumulator acc.
fold :: (Integer -> b -> b) -> b -> C -> b

Define an instance IntCollection C.

instance IntCollection C where
size = fold (const (+1)) 0
member x = fold ((||) . (==x)) False
extractMin = fold aux Nothing

where aux x Nothing = Just x
aux x (Just y) = Just (min x y)

update f = fold (aux . f) empty
where aux Nothing = id

aux (Just x) = insert x
partition p = fold aux (empty , empty)

where aux x (c1,c2)
| p x = (insert x c1, c2)
| otherwise = (c1, insert x c2)

0

1

2

3

4

5

– Page 5 / 16 –

Sa
mp
le
So
lut
ion

– Page 6 / 16 –

Sa
mp
le
So
lut
ion

Problem 5 Wishes From Peano (4 credits)

Given the type of natural numbers

data Nat = Z | Suc Nat

and the following definition of addition on these numbers

add Z m = m
add (Suc n) m = Suc (add n m)

show that addition is associative by proving the following equation using structural induction:

add (add x y) z = add x (add y z)

Lemma: add (add x y) z .=. add x (add y z)
Proof by induction on x
Case Z

To show: add (add Z y) z .=. add Z (add y z)

add (add Z y) z
(by def add) .=. add y z
(by def add) .=. add Z (add y z)

Case (Suc x)
To show: add (add (Suc x) y) z .=. add (Suc x) (add y z)
IH: add (add x y) z .=. add x (add y z)

add (add (Suc x) y) z
(by def add) .=. add (Suc (add x y)) z
(by def add) .=. Suc (add (add x y) z)
(by IH) .=. Suc (add x (add y z))
(by def add) .=. add (Suc x) (add y z)

QED

0

1

2

3

4

– Page 7 / 16 –

Sa
mp
le
So
lut
ion

0

1

2

3

4

5

Problem 6 Proof 2 (5 credits)

You are given the following definitions:

data Tree a = L | N (Tree a) a (Tree a)

flat :: Tree a -> [a]
flat L = []
flat (N l x r) = flat l ++ (x : flat r)

app :: Tree a -> [a] -> [a]
app L xs = xs
app (N l x r) xs = app l (x : app r xs)

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

Prove the following statement using structural induction:

app t [] = flat t

You may use the following lemmas about ++ in the proof:

Lemma ++ _assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Lemma ++_nil: xs ++ [] = xs
Lemma nil_ ++: [] ++ xs = xs

Hint: you should generalize the statement first.

We generalize the property app t [] = flat t to the following statement:

Lemma gen: app t xs = flat t ++ xs
Proof by induction on Tree t
Case L:

To show: app L xs = flat L ++ xs

app L xs
(def app) = xs
(def ++) = [] ++ xs
(def flat) = flat L ++ xs

Case (N l x r):
To show: app (N l x r) xs = flat (N l x r) ++ xs
IH1: app l xs = flat l ++ xs
IH2: app r xs = flat r ++ xs

app (N l x r) xs
(def app) = app l (x : app r xs)
(by IH1) = flat l ++ (x : app r xs)
(by IH2) = flat l ++ (x : (flat r ++ xs))

flat (N l x r) ++ xs
(def flat) = (flat l ++ (x : flat r)) ++ xs
(by ++ _assoc) = flat l ++ ((x : flat r) ++ xs)
(def ++) = flat l ++ (x : (flat r ++ xs))

QED

– Page 8 / 16 –

Sa
mp
le
So
lut
ion

Our goal then follows:

Lemma: app t [] = flat t
Proof

app t []
(by gen) = flat t ++ []
(by ++_nil) = flat t

QED

– Page 9 / 16 –

Sa
mp
le
So
lut
ion

0

1

2

3

4

5

6

Problem 7 IO (6.5 credits)

Define an IO action main :: IO () that waits for user input in form of a binary number. The binary
number is given as a string 0bx where x is a (potentially empty) string consisting of 0s and 1s. The string
0b represents 0. The program should output "Invalid input" if the given number does not adhere to this
format. Otherwise, the program should print the number to the standard output after converting it to
decimal. For example, the program should output 5 for the input 0b0101. The program should continue to
listen for the next input in either of the above cases. As an example, consider the following excerpt of the
execution of the program.

>>> 0b12
Invalid input
>>> 0b010
2
>>> 0b111
7
...

You can read from standard input with the function getLine :: IO String and print a string to the
standard output with putStrLn :: String -> IO ().

toDecimal :: String -> Integer -> Integer
toDecimal [] _ = 0
toDecimal ('0':bs) r = toDecimal bs (r * 2)
toDecimal ('1':bs) r = r + toDecimal bs (r * 2)

main :: IO ()
main = do

bin <- getLine
let (pref , num) = splitAt 2 bin
if pref /= "0b" || any (\b -> b `notElem` ['0','1']) num

then putStrLn "Invalid input"
else print $ toDecimal (reverse num) 1

main

– Page 10 / 16 –

Sa
mp
le
So
lut
ion

Problem 8 Evaluation (3 credits)

Given the following definitions:

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

odds :: [Integer]
odds = 1 : map (+2) odds

(||) :: Bool -> Bool -> Bool
True || b = True
False || b = b

(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \x -> f (g x)

inf :: [a]
inf = inf

instance Eq a => Eq [a] where
(==) :: Eq a => [a] -> [a] -> Bool
[] == [] = True
(x:xs) == (y:ys) = x == y && xs == ys
_ == _ = False

Using Haskell’s evaluation strategy as introduced in the lecture, evaluate the following expressions step-by-step
as far as possible . Indicate infinite reductions by “. . . ” as soon as nontermination becomes apparent.

1. (\f g -> g . map f) (+1) head odds

2. False || inf == inf

1.

(\f -> \g -> g . map f) (+1) head odds
(\g -> g . map (+1)) head odds
(head . map (+1)) odds
(\x -> head (map (+1) x)) odds
head (map (+1) odds)
head (map (+1) (1 : map (+2) odds))
head (((+1) 1) : map (+1) (map (+2) odds))
(+1) 1
2

2.

False || inf == inf
inf == inf
inf == inf
...

0

1

2

3

– Page 11 / 16 –

Sa
mp
le
So
lut
ion

– Page 12 / 16 –

Sa
mp
le
So
lut
ion

Additional space for solutions–clearly mark the (sub)problem your answers are related to and
strike out invalid solutions.

– Page 13 / 16 –

Sa
mp
le
So
lut
ion

– Page 14 / 16 –

Sa
mp
le
So
lut
ion

– Page 15 / 16 –

Sa
mp
le
So
lut
ion

– Page 16 / 16 –

