
Technical University of Munich WS 2020/21
Chair for Logic and Verification 11.12.2020

Prof. Tobias Nipkow, Ph.D. Deadline: 21.12.2020, 23:59
J. Rädle, L. Stevens, K. Kappelmann, MC Sr Eberl

Functional Programming and Verification
Sheet 6

Exercise T6.1 Everything is a Fold

Using foldr, implement the following functions:

a) length':: [a] -> Integer computing the length of a list

b) map' :: (a -> b) -> [a] -> [b] mapping a function over a list

c) reverse':: [a] -> [a] reversing a list

d) minimum':: Ord a => [a] -> a -> a computing the minimum of a given value and all
values of a given list.

e) fib :: Integer -> Integer computing the Fibonacci numbers

f) inits' :: [a] -> [[a]] computing all prefixes of a list

g) Finish the given template for squareOn :: (Eq a, Num a) => [a] -> a -> a such that

squareOn [x1, . . . , xn] y =

{
y2, if y ∈ {x1, . . . , xn}
y, otherwise

h) compose :: [(a -> a)] -> a -> a such that compose [f1, . . . , fn] = f1(. . . (fn(·) . . .)

Exercise T6.2 Everything is an Iteration

a) Write a function iter :: Int -> (a -> a) -> a -> a that takes a number n, a function
f , and a value x, and applies f n-times with initial value x, that is iter n f x computes
fn(x). A negative input for n should have the same effect as passing n = 0. For example,
iter 3 sq 2 = 256, where sq x = x * x

b) Use iter to implement the following functions without recursion:

a) Exponentiation: pow :: Int -> Int -> Int such that pow n k = nk (for all k ≥ 0).

b) The function drop :: Int -> [a] -> [a] from Haskell’s standard library that takes
a number k and a list [x1, . . . , xn] and returns [xk+1, . . . , xn]. You can assume that
k ≤ n.

c) The function replicate :: Int -> a -> [a] from Haskell’s standard library that
takes a number n ≥ 0 and a value x and returns the list [x, . . . , x︸ ︷︷ ︸

n-times

].

c) Write a function iterWhile :: (a -> a -> Bool) -> (a -> a) -> a -> a such that
iterWhile test f x iterates f until test x (f x) is false, and then returns x.

1

https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de

d) Use iterWhile to implement a function findSup :: Ord a => (a -> a) -> a -> a -> a

such that findSup f m x finds the largest value fn(x) that is at most m assuming that f
is strictly monotonically increasing.

Exercise T6.3 (Optional) Everything is a Variable | Lambda | Application and That is All!

Datatypes like Int, Integer, etc. are overrated. In this exercise, we ask you to build your own
natural numbers – à la Church – using only function abstractions and applications.

Our type of numeral will be type ChurchNum a = (a -> a) -> a -> a. Sounds crazy at first,
but listen for a moment:

The idea is that a numeral can be encoded as the number of applications of a function f to
a given initial value x. The numeral 0 is hence defined as zero f x = x, the numeral 1 as
one f x = f x, the numeral 2 as two f x = f (f x), etc.

a) Write a function fromInt :: Int -> ChurchNum a returning the Church numeral corres-
ponding to a given x :: Int.

b) Write a function toInt :: ChurchNum Int -> Int

such that toInt . fromInt = id for non-negative input values. Write a QuickCheck test.

c) Write a function succ :: ChurchNum a -> ChurchNum a returning the successor of a
Church numeral.

d) Write a function
plus :: ChurchNum a -> ChurchNum a -> ChurchNum a adding two Church numerals.
Test whether plus corresponds to (+) defined on Int for non-negative inputs.

e) Write a function
mult :: ChurchNum a -> ChurchNum a -> ChurchNum a multiplying two Church numer-
als. Test whether mult corresponds to (*) defined on Int for non-negative inputs.

f) Define whatever else comes up to your mind using Church numerals. Get inspired on
Wikipedia.

Homework

You need to pass all tests to collect a coin.

Exercise H6.1 The Haskell School of Music

In this exercise, we will use Haskell to generate some sweet music! More specifically, we use a
technique called subtractive synthesis to build a synthesizer that can generate and manipulate
audio signals.

Background Mathematically, a sound can be represented as a continuous function that maps
every point in time to an amplitude value in the interval [−1, 1]. Thinking in digital terms,
however, we have to rethink this a bit: to accurately represent an audio signal in a discrete way,

2

https://de.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Church_encoding#Church_numerals
https://en.wikipedia.org/wiki/Subtractive_synthesis

we sample the signal at a fixed interval, determined by the sample rate. A common sample
rate is, for example, 44100 samples/second, as used for most consumer audio, e.g. for CDs.

This technique is called Pulse-code modulation, (or PCM for short). You can find a visualisation
in Figure 1. Many uncompressed audio file formats today, such as WAVE (.wav), are indeed
PCM-encoded.

0 2 4 6

(a) Original signal

0 2 4 6

(b) Sampling

0 2 4 6

(c) Sampled signal

Figure 1: Digital sampling of an analog signal

In Haskell we represent this discrete signal as a List of Double-valued samples:

• type Sample = Double

• type SampledSignal = [Sample]

Oscillators The foundation of every subtractive synthesizer is an oscillator: a component that
generates an oscillating waveform (e.g. sine wave) at a specific frequency. Analog synthesizers
use electronic oscillators, but we can simulate the same effect using Haskell functions! Old
synthesizers (like the Minimoog) produce a variety of simple waveforms for their signals. The
most important ones that we are going to use are displayed in Figure 2.

So how does the synthesizer know what frequencies to generate? Digital protocols like MIDI
specify fixed notes that have predefined frequencies. Our synthesizer follows a similar approach
by using the following formula:

f(n) = 440 ∗ (2n/12)

f(n) calculates the frequency of a tone that is n semitones away from A4. A tone lower than A4

has a negative distance. e.g. A3 has a distance of −12 from A4. Our synthesizer will work with
the aforementioned distances in semitones to A4, so don’t worry about too much about musical
notation.

Tasks

1. We define the type type Signal = Seconds -> Sample (cf. template file). Write the
following functions that are expected to return a single period of the signals as depicted
in Figure 2. Since these functions only represent a single period, they only need to be
defined on the interval [0, 1).

a) sinPeriod :: Signal

b) triPeriod :: Signal

3

https://en.wikipedia.org/wiki/Pulse-code_modulation
https://en.wikipedia.org/wiki/Electronic_oscillator
https://en.wikipedia.org/wiki/Minimoog
https://en.wikipedia.org/wiki/A_(musical_note)

0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

(a) Sine

0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

(b) Triangle

0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

(c) Sawtooth

0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

(d) Square

Figure 2: Common synthesizer waveforms

c) sawPeriod :: Signal

d) sqwPeriod :: Signal

Make sure that your samples stay in the interval [−1, 1], they closely align with the graphs
from Figure 2, and that your sawtooth and triangle waveforms are perfectly piecewise
linear.

After the oscillators have created the waveforms, we can start manipulating the returned signals
to generate rich and dynamic sounds. We start with a so-called ADSR envelope that is used
to modify the amplitude of the signal. It creates a sound that first takes a bit of time to reach
its maximum amplitude, then fades, stays steady, and finally fades again until the amplitude is
zero (see Figure 3). This is used to ensure that there are no unexpected jumps from/to zero,
which generally tend to produce annoying “clicky” sounds. Instead, we obtain a smooth audio
wave as depicted in Figure 4.

2. We define type ADSR = (Seconds, Seconds, Sample, Seconds). Write a function adsr

:: ADSR -> Seconds -> Signal -> Signal such that adsr (attack, decay, sustain,

release) duration signal modifies the amplitude of a given signal with a given dura-
tion as shown in Figure 4. In this example the ADSR-paramters are (2.0, 1.0, 0.5,

2.5) and the duration is 10. While attack, decay and release control the length of the
respective phases, sustain specifies the amplitude of the signal during the sustain phase.
In our synthesizer, the release happens before the note ends, which means you need to
apply it to the end of the signal that the function receives. Make sure that the transitions
of attack, decay, and release are perfectly linear.

3. Next we implement an oscillator. An oscillator is defined as a function that returns a

4

https://en.wikipedia.org/wiki/Envelope_(music)#ADSR

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
attack

decay

sustain

release

duration

Figure 3: Example of Attack, Decay, Sustain, Release and Duration

2 4 6 8 10

−1

−0.5

0

0.5

1

(a) Input

2 4 6 8 10

−1

−0.5

0

0.5

1

(b) Output

Figure 4: Input and Output signals of adsr

signal for a given semitone and duration. We thus define type Oscillator = Semitone

-> Seconds -> Signal.

Write a function osc :: Signal -> ADSR -> Oscillator that receives one of the signal
functions defined earlier (defining the shape of a single period) as well as ADSR parameters
and returns an oscillator. It has to repeat the input signal using the right frequency (use
aforementioned function f to calculate the frequency of the semitone) and then has to
apply the ADSR to this signal. To repeat the wave form in every period, the function
floor can be useful.

4. So far, we have worked with signals represented as functions of type Signal = Seconds

-> Sample. In this task, you can assume that the signal is already sampled. To encode
sampled signals, we use the type SampledSignal = [Sample].

We can create a polyphonic synthesizer by using multiple sources for notes and multiple
oscillators (cf Figure 5). For this, we need a function that mixes signals.

Write a function mix :: [SampledSignal] -> SampledSignal that normalizes the sig-
nals (divides the samples of each signal by the number of signals to be mixed) and combines
them into a single signal by adding them together. The resulting signal should have the
same length as the longest signal of the input.

Making Music We can now put all components together to create a synthesizer. Don’t worry,
we have already done this for you – you can focus on the fun part (see below).

5

Notes Oscillator

Notes Oscillator

Notes Oscillator

Mixer

Figure 5: Polyphonic Synthesizer

Figure 6: Example MIDI file structure

Our program first reads a bunch of notes from a MIDI file. Figure 6 shows the structure of
such a file. MIDI files consist of multiple tracks, each containing a bunch of notes. For those
who are more familiar with MIDI: we only use a small subset of the MIDI format, ignoring
almost all MIDI messages except for Note On and Note Off. Velocities are also ignored. Some
MIDI editors also create empty tracks storing additional information. Our synthesizer will
automatically ignore those.

The notes of the MIDI file will be passed to the function

notesToSignal :: (Oscillator -> [Note] -> SampledSignal)

-> [[Note]] -> SampledSignal}

which, per default, uses the playNotes function in lib/Synth.hs to produce a signal; however,
you don’t have to worry about playNotes to customize the synthesizer. Instead you just have
to modify notesToSignal. In this function, you can map the MIDI file’s tracks to different
oscillators and use mix to combine them into a signal. You can even apply effects to the
produced signal to further enhance your tune.

6

Our program will then convert your signal into a WAV file. To run your synthesizer use:

stack run synth <filepath to MIDI file> <filepath to WAV file>

Wettbewerb: The FPV-Grammy Award It is time to get really creative. We provided you
with a selection of DSP-effects (Digital Signal Processing). You can use and mix them into the
output of your synthesizer – or even better, write your own effects!

Use addEffects :: [DSPEffect] -> Signal -> Signal or
applyEffectToInterval :: (Seconds, Seconds) -> Signal -> DSPEffect -> Signal from
Effects to add your effects to signals and create a musical masterpiece.

Here are some ideas to get started with this:

• Amplitude Modulation

• Phase Shifting

• Time Modulation

• Bit crushing

• Echo & Delay

The MCs and tutors – which will act as mini-MCs for the upcoming Wettbewerb – expect no
less than award-worthy remixes using stunning effects and mesmerising oscillators. Your final
composition will be evaluated based on the originality and technical ingenuity of implemented
oscillators and effects as well as overall melodiousness.

You can work on one of the the MIDI files provided in the repository or, if you wish, use another
file of your choice. Note that just submitting an interesting MIDI file won’t cut it.

This exercise was designed and implemented in coorporation with our tutors. Special thanks to
all of them!

The ultimate goal for me in making music, or at least one of the main goals for
me, is to create memorable melodies. That goal is there regardless of the tools
we have.

— Koji Kondo

7

https://en.wikipedia.org/wiki/Tremolo
https://en.wikipedia.org/wiki/Phaser_(effect)
https://en.wikipedia.org/wiki/Chorus_effect
https://en.wikipedia.org/wiki/Bitcrusher
https://en.wikipedia.org/wiki/Delay_(audio_effect)
https://en.wikipedia.org/wiki/Koji_Kondo

