On the decomposition of *n*-dimensional cuboids into *n*-dimensional cubes of edge lengths 2^k

Felix Zehetbauer

2020

1 Introduction

We want to find the optimal decomposition of an *n*-dimensional cuboid into *n*-dimensional cubes of edge lengths 2^k , $k \in \mathbb{N}_0$. The optimal decomposition is the decomposition that requires the least cubes.[1]

In the following C is an arbitrary n-dimensional cuboid with dimensions $d_1, ..., d_n \in \mathbb{N}_0$. A decomposition $(c_0, ..., c_k)$ of C with $c_0, ..., c_k \in \mathbb{N}_0$ and $c_k \neq 0$ means C can be decomposed into c_i cubes of edge length 2^i .

2 Lemmas and Theorems

Lemma 1. $b_k = \prod_{i=1}^n \left\lfloor \frac{d_i}{2^k} \right\rfloor$ is the number of cubes of edge length $2^k, k \in \mathbb{N}_0$ that can fit into C.

Proof. Let A be an n-dimensional cuboid with dimensions $da_1, ..., da_n \in \mathbb{N}_0$ that is built of cubes of edge length 2^k . Assume, without loss of generality, that $da_i \leq da_{i+1}$ and $d_i \leq d_{i+1}$ for $1 \leq i < n$. A can fit into C, iff $da_i \leq d_i$ for $1 \leq i \leq n$. It is obvious that $da_i = t_i \cdot 2^k$ with t_i being the number of cubes placed next to each other in each dimension. Therefore $\prod_{i=1}^n t_i = \prod_{i=1}^n \frac{da_i}{2^k}$ is the number of cubes of edge length 2^k that A consists of. Consequently, the largest A built that way, that can fit into C, which has the dimensions $da_i = \lfloor \frac{d_i}{2^k} \rfloor \cdot 2^k$, consists of $\prod_{i=1}^n \lfloor \frac{d_i}{2^k} \rfloor$ cubes of edge length 2^k . This is also the number of cubes of edge length 2^k that can fit into C because, since $d_i - da_i = d_i - \lfloor \frac{d_i}{2^k} \rfloor \cdot 2^k =$

of edge length 2^k that can fit into C because, since $d_i - da_i = d_i - \lfloor \frac{\omega_i}{2^k} \rfloor \cdot 2^k = \left(\frac{d_i}{2^k} - \lfloor \frac{d_i}{2^k} \rfloor\right) \cdot 2^k < 1 \cdot 2^k$, there is obviously no way to fit an additional cube of edge length 2^k into C.

Corollary 1.1. $b_k = 0, \forall k \ge \lfloor \log_2(min(d_1, ..., d_n) \rfloor + 1.$

Proof.
$$0 \leq \lfloor \frac{d_i}{2^k} \rfloor \leq \lfloor \frac{d_i}{2^{\lfloor \log_2(min(d_1,...,d_n) \rfloor + 1})} \rfloor = 0$$
 when $d_i = min(d_1,...,d_n)$.
Therefore $b_k = \prod_{i=1}^n \lfloor \frac{d_i}{2^k} \rfloor = \lfloor \frac{d_1}{2^k} \rfloor \cdot \ldots \cdot 0 \cdot \ldots \cdot \lfloor \frac{d_n}{2^k} \rfloor = 0$.

Lemma 2. (b_0) is a valid decomposition of C.

Proof. According to Lemma 1, the cube of edge length 2^0 fits b_0 times into C and because the volume of a cube of edge length $2^0 V_{c_1} = 1$, it follows that $b_0 \cdot V_{c_1} = b_0 = \prod_{i=1}^n \left\lfloor \frac{d_i}{2^0} \right\rfloor = \prod_{i=1}^n d_i = V_C$. Therefore (b_0) is a valid decomposition of C.

Theorem 3. $dec(C) \coloneqq (b_0 - b_1 \cdot 2^n, b_1 - b_2 \cdot 2^n, ..., b_k)$ is a valid decomposition of C.

Proof. According to Lemma 1, every *n*-dimensional cube of edge length 2^i fits 2^n times into a cube of edge length 2^{i+1} . In addition, the volume of 2^n cubes of edge length 2^i is the same as the volume of a cube of edge length 2^{i+1} . Therefore in a decomposition, every cube of edge length 2^{i+1} can be replaced by 2^n cubes of edge length 2^i . Hence $b_i - b_{i+1} \cdot 2^n$ calculates how many cubes of edge length 2^{i} . Would fit into the cuboid, excluding the area, which could be occupied by cubes of edge length 2^{i+1} . That means $b_i - b_{i+1} \cdot 2^n$ is the number of cubes of edge length 2^i , which cannot be replaced by a bigger cube. The existence of a valid decomposition $(b_0 - b_1 \cdot 2^n, ..., b_i)$ implies that $(b_0 - b_1 \cdot 2^n, ..., b_i - b_{i+1} \cdot 2^n, b_{i+1})$ is also a valid decomposition (given that $b_{i+1} \neq 0$). Because of that, Lemma 2 implies that dec(C) is a valid decomposition.

Theorem 4. dec(C) is the optimal decomposition of C.

Proof. Let t_i be defined as the number of cubes of edge length 2^i in a decomposition of C. Every valid decomposition $(t_0, ..., t_k)$ of C has a maximum of $b_i - t_{i+1} \cdot 2^n - t_{i+2} \cdot 2^{2 \cdot n} - ... - t_k \cdot 2^{(k-i) \cdot n}$ cubes of edge length 2^i because, according to Lemma 1, every cube of edge length 2^{i+j} consists of $2^{j \cdot n}$ cubes of edge length 2^i and can therefore be replaced by them. Let $\Delta_i \geq 0$ be the number of cubes of edge length 2^i a decomposition has less than maximum possible. Hence t_i can be written as

$$\begin{split} t_i &= b_i - t_{i+1} \cdot 2^n - t_{i+2} \cdot 2^{2 \cdot n} - \dots - t_k \cdot 2^{(k-i) \cdot n} - \Delta_i \\ &= \underbrace{t_{i+1}}_{i+1} \\ &= b_i - \overbrace{(b_{i+1} - t_{i+2} \cdot 2^n - \dots - t_k \cdot 2^{(k-(i+1)) \cdot n} - \Delta_{i+1})}^{t_{i+1}} \cdot 2^n \\ &- t_{i+2} \cdot 2^{2 \cdot n} - \dots - t_k \cdot 2^{(k-i) \cdot n} - \Delta_i \\ &= b_i - (b_{i+1} - \Delta_{i+1}) \cdot 2^n + (t_{i+2} \cdot 2^{2 \cdot n} + \dots + t_k \cdot 2^{(k-i) \cdot n}) \\ &- (t_{i+2} \cdot 2^{2 \cdot n} + \dots + t_k \cdot 2^{(k-i) \cdot n}) - \Delta_i \\ &= b_i - (b_{i+1} - \Delta_{i+1}) \cdot 2^n - \Delta_i. \end{split}$$

It can be assumed that $\Delta_0 = 0$ because every decomposition with $\Delta_0 \neq 0$ is obviously invalid. Let $f(\Delta_1, ..., \Delta_k)$ be the number of cubes of the decomposition $(t_0, ..., t_k)$ of C. Hence

$$f(\Delta_1, ..., \Delta_k) = t_0 + t_1 + ... + t_k$$

= $(b_0 - (b_1 - \Delta_1) \cdot 2^n) + (b_1 - (b_2 - \Delta_2) \cdot 2^n - \Delta_1)$
+ $... + (b_k - \Delta_k)$
= $\overbrace{b_0 + (b_1 + ... + b_k) \cdot (1 - 2^n)}_{+ (\Delta_1 + ... + \Delta_k) \cdot (2^n - 1)}$.

 $f(\Delta_1, ..., \Delta_k)$ is minimal exactly when $\Delta_1 + ... + \Delta_k$ is minimal. This is the case when $\Delta_1 = ... = \Delta_k = 0$. Therefore if the decomposition $(t_0, ..., t_k)$ with $t_i = b_i - b_{i+1} \cdot 2^n$ is valid, it must be the optimal one. Because this is how dec(C), which is according to Theorem 3 a valid decomposition, was defined, dec(C) must be the optimal decomposition of C.

3 Conclusion

With the application of these Lemmas and Theorems, it is possible to implement an efficient algorithm to decompose an *n*-dimensional cuboid *C* into *n*dimensional cubes of edge lengths 2^k , $0 \le k \le \lfloor \log_2(min(d_1, ..., d_n) \rfloor$ that needs according to Corollary 1.1 $\mathcal{O}(n \cdot \log(min(d_1, ..., d_n)))$ arithmetic operations.

References

[1] Prof. Tobias Nipkow, Ph.D.,
J. Rädle, L. Stevens, K. Kappelmann, MC Sr Eberl: Functional Programming and Verification Sheet 5, https://www21.in.tum.de/teaching/fpv/WS20/assets/ex05.pdf