
The Correctness of Herr Schmidmeier’s Algorithm

for the Top Cycle

Florian Hübler, MC Sr

December 9, 2020

Contents

1 Auxiliary facts 1

2 Tournaments 2
2.1 Basic concepts . 2
2.2 Chains and cycles . 4
2.3 The two iterative algorithms for TC 6

3 Main proof 9

1 Auxiliary facts

lemma ex-max-if-finite: finite S =⇒ S 6= {} =⇒ ∃m∈S . ¬(∃ x∈S . x > (m:: ′a::order))
by (induction rule: finite.induct) (auto intro: order .strict-trans)

lemma ex-is-arg-max-if-finite:
fixes f :: ′a ⇒ ′b :: order
shows finite S =⇒ S 6= {} =⇒ ∃ x . is-arg-max f (λx . x ∈ S) x
unfolding is-arg-max-def using ex-max-if-finite[of f ‘ S] by auto

definition repeat where repeat n xs = concat (replicate n xs)

lemma repeat-eq-Nil-iff [simp]: repeat n xs = [] ←→ n = 0 ∨ xs = []
by (induction n) (auto simp: repeat-def)

lemma hd-concat [simp]: xss 6= [] =⇒ hd xss 6= [] =⇒ hd (concat xss) = hd (hd
xss)

by (cases xss) auto

lemma hd-repeat [simp]: n > 0 =⇒ hd (repeat n xs) = hd xs
by (cases n = 0 ∨ xs = []) (auto simp: repeat-def)

1

lemma length-repeat [simp]: length (repeat n xs) = n ∗ length xs
by (induction n) (auto simp: repeat-def)

lemma repeat-0 [simp]: repeat 0 xs = []
by (simp add : repeat-def)

lemma repeat-Nil [simp]: repeat n [] = []
by (simp add : repeat-def)

lemma repeat-Suc [simp]: repeat (Suc n) xs = xs @ repeat n xs
by (simp add : repeat-def)

2 Tournaments

A tournament (i.e. a total and asymmetric relation) with players of type ′a
is represented by a function Dom mapping players to their dominion.

Ffor simplicity, we assume that the type of players is finite and that the
tournament contains all the players of the type.

locale tournament =
fixes Dom :: ′a :: finite ⇒ ′a set
assumes total : x 6= y =⇒ x ∈ Dom y ∨ y ∈ Dom x
assumes asym: x /∈ Dom y ∨ y /∈ Dom x

begin

lemma not-in-Dom-iff [simp]: x /∈ Dom y ←→ x = y ∨ y ∈ Dom x
using total asym by force

lemma asym ′ [simp]: x ∈ Dom y =⇒ y /∈ Dom x
using asym by auto

lemma irrefl [simp]: x /∈ Dom x
using asym[of x x] by simp

lemmas Dom-props = total antisym

2.1 Basic concepts

definition covers :: ′a ⇒ ′a ⇒ bool (infixl covers 50)
where x covers y ←→ Dom y ⊆ Dom x

definition dominant :: ′a set ⇒ bool where
dominant X ←→ X 6= {} ∧ (∀ x∈X . ∀ y∈−X . y ∈ Dom x)

definition CO :: ′a set
where CO = {x . is-arg-max (card ◦ Dom) (λ-. True) x}

definition UC :: ′a set

2

where UC = {x . ¬(∃ y . y 6= x ∧ y covers x)}

definition TC :: ′a set
where TC =

⋂
{X . dominant X }

lemma CO-nonempty : CO 6= {}
using ex-is-arg-max-if-finite[of UNIV card ◦ Dom]
unfolding CO-def by simp

lemma CO-subset-UC : CO ⊆ UC
proof

fix x assume x ∈ CO
show x ∈ UC
proof (rule ccontr)

assume x /∈ UC
then obtain y where y 6= x y covers x

by (auto simp: UC-def)
hence insert x (Dom x) ⊆ Dom y

using Dom-props by (cases x ∈ Dom y) (auto simp: covers-def)
moreover have x /∈ Dom x

by auto
ultimately have Dom x ⊂ Dom y

by blast
hence card (Dom x) < card (Dom y)

by (intro psubset-card-mono) auto
with 〈x ∈ CO 〉 show False

by (auto simp: CO-def is-arg-max-def)
qed

qed

lemma UC-subset-dominant :
assumes dominant X
shows UC ⊆ X

proof
fix x assume x ∈ UC
show x ∈ X
proof (rule ccontr)

assume x : x /∈ X
from x assms have Dom x ⊆ −X

using assms Dom-props by (auto simp: dominant-def)
moreover obtain y where y ∈ X −X ⊆ Dom y

using assms Dom-props unfolding dominant-def by fast
ultimately have y covers x

by (auto simp: covers-def)
with 〈x ∈ UC 〉 〈x /∈ X 〉 〈y ∈ X 〉 show False

by (auto simp: UC-def)
qed

qed

3

lemma dominant-UNIV [intro]: dominant UNIV
by (auto simp: dominant-def)

lemma dominant-INT [intro]:
assumes

∧
X . X ∈ F =⇒ dominant X

shows dominant (
⋂

F)
proof −

have CO ⊆ UC
by (rule CO-subset-UC)

also have UC ⊆
⋂

F
using UC-subset-dominant assms by auto

finally have
⋂

F 6= {}
using CO-nonempty by blast

with assms show ?thesis unfolding dominant-def
by auto

qed

lemma dominant-Int [intro]:
assumes dominant X and dominant Y
shows dominant (X ∩ Y)
using dominant-INT [of {X , Y }] assms by auto

lemma dominant-subset-total :
assumes dominant X and dominant Y
shows X ⊆ Y ∨ Y ⊆ X

proof (rule ccontr)
assume ¬(X ⊆ Y ∨ Y ⊆ X)
then obtain x y where xy : x ∈ X − Y y ∈ Y − X

by auto
from xy have y ∈ Dom x

using 〈dominant X 〉 by (auto simp: dominant-def)
moreover from xy have x ∈ Dom y

using 〈dominant Y 〉 by (auto simp: dominant-def)
ultimately show False

by auto
qed

lemma dominant-TC : dominant TC
unfolding TC-def by auto

lemma UC-subset-TC : UC ⊆ TC
using dominant-TC UC-subset-dominant by blast

2.2 Chains and cycles

A chain is a list of element such that each element (except for the last one)
is defeated by its successor.

fun chain :: ′a list ⇒ bool where
chain [] ←→ True

4

| chain [x] ←→ True
| chain (x # y # xs) ←→ x ∈ Dom y ∧ chain (y # xs)

lemma chain-ConsD : chain (x # xs) =⇒ chain xs
by (cases xs) auto

lemma chain-append-iff : chain (xs @ z # ys) ←→ chain (xs @ [z]) ∧ chain (z #
ys)
proof (induction xs)

case (Cons x xs)
thus ?case by (cases xs) auto

qed auto

A cycle is a chain where the last element is additionally defeated by the first
one.

definition cycle :: ′a list ⇒ bool
where cycle xs ←→ chain (xs @ [hd xs])

lemma cycle-Nil [simp]: cycle []
by (simp add : cycle-def)

lemma cycle-appendI [intro]:
assumes cycle xs and cycle ys
assumes xs = [] ∨ ys = [] ∨ hd xs = hd ys
shows cycle (xs @ ys)

proof (cases xs = [] ∨ ys = [])
case False
obtain y ys ′ where [simp]: ys = y # ys ′

using False by (cases ys) auto
from assms have chain (xs @ hd xs # (tl ys @ [hd ys]))

using False by (subst chain-append-iff) (auto simp: cycle-def)
thus ?thesis

using False assms by (simp add : cycle-def)
qed (use assms in auto)

lemma cycle-repeatI [intro]:
assumes cycle xs
shows cycle (repeat n xs)

proof (cases xs = [] ∨ n = 0)
case False
hence n > 0 xs 6= []

by auto
thus ?thesis using assms

by (induction n rule: nat-induct-non-zero) auto
qed auto

5

2.3 The two iterative algorithms for TC

The function step performs one iteration of Herr Schmidmeier’s algorithm
(i.e. it computes the union of all dominators of elements of X).

definition step where
step X = (

⋃
x∈X . −Dom x−{x})

The function step ′ performs one iteration of the MC Sr’s algorithm, which
takes adds all the dominators of elements in X to X.

definition step ′ where
step ′ X = X ∪ step X

We show some fairly obvious properties of step and step ′.

lemma step-subset : dominant Y =⇒ X ⊆ Y =⇒ step X ⊆ Y
by (auto simp: step-def dominant-def)

lemma steps-subset : dominant Y =⇒ X ⊆ Y =⇒ (step ˆˆ n) X ⊆ Y
by (induction n) (simp-all add : step-subset)

lemma step ′-subset : dominant Y =⇒ X ⊆ Y =⇒ step ′ X ⊆ Y
unfolding step ′-def using step-subset by blast

lemma step ′-dominant : dominant X =⇒ step ′ X = X
by (auto simp: dominant-def step ′-def step-def)

lemma step ′-TC [simp]: step ′ TC = TC
by (rule step ′-dominant) (rule dominant-TC)

lemma steps-mono: X ⊆ Y =⇒ (step ˆˆ n) X ⊆ (step ˆˆ n) Y
proof (induction n arbitrary : X Y)

case (Suc n)
have (step ˆˆ n) (step X) ⊆ (step ˆˆ n) (step Y)

using Suc.prems by (intro Suc.IH) (auto simp: step-def)
thus ?case by (simp del : funpow .simps add : funpow-Suc-right)

qed auto

In particular, iterating step ′ n times is the same as the union of all results
produced by iterating step up to n times.

lemma funpow-step ′-eq : (step ′ ˆˆ n) X = (
⋃

k≤n. (step ˆˆ k) X)
proof (induction n arbitrary : X)

case (Suc n)
have (step ′ ˆˆ Suc n) X = step ′ ((step ′ ˆˆ n) X)

by simp
also have (step ′ ˆˆ n) X = (

⋃
k≤n. (step ˆˆ k) X)

by (rule Suc.IH)
also have step ′ . . . = (

⋃
k≤n. (step ˆˆ k) X) ∪ step (

⋃
k≤n. (step ˆˆ k) X)

by (simp add : step ′-def)
also have step (

⋃
k≤n. (step ˆˆ k) X) = (

⋃
k≤n. (step ˆˆ Suc k) X)

6

by (auto simp: step-def)
also have . . . = (

⋃
k∈Suc‘{..n}. (step ˆˆ k) X)

by blast
also have (

⋃
k≤n. (step ˆˆ k) X) ∪ . . . = (

⋃
k∈{..n}∪Suc‘{..n}. (step ˆˆ k)

X)
by blast

also have {..n}∪Suc‘{..n} = {..Suc n}
by force

finally show ?case .
qed auto

Auxiliary lemma: if we have a chain of length n from some element of X
ending in some element y, then y will be in the result after iterating step on
X n times.

lemma steps-chain:
assumes chain (xs @ [y]) and hd (xs @ [y]) ∈ X
shows y ∈ (step ˆˆ length xs) X
using assms

proof (induction xs arbitrary : X)
case (Cons x xs)
have x ∈ Dom (hd (xs @ [y]))

using Cons.prems by (cases xs) auto
hence hd (xs @ [y]) ∈ step X

using Cons.prems Dom-props by (fastforce simp: step-def)
hence y ∈ (step ˆˆ length xs) (step X)

using Cons.prems chain-ConsD by (intro Cons.IH) auto
thus ?case

by (subst length-Cons, subst funpow-Suc-right) simp
qed auto

Correctness lemma for the MC Sr’s algorithm: eventually, applying step ′

does not change the result anymore. At that point, we have computed TC.

lemma step ′-stabilises:
assumes X 6= {} and X ⊆ TC
shows ∃N . ∀n≥N . (step ′ ˆˆ n) X = TC
using assms

proof (induction card (−X) arbitrary : X rule: less-induct)
case (less X)
show ?case
proof (cases step ′ X = X)

case True
hence dominant X using less.prems

by (auto simp: step ′-def step-def dominant-def)
with 〈X ⊆ TC 〉 have X = TC

by (auto simp: TC-def)
moreover have (step ′ ˆˆ n) TC = TC for n

by (induction n) auto
ultimately show ?thesis

by blast

7

next
case False
hence −(step ′ X) ⊂ −X

by (auto simp: step ′-def)
hence card (−step ′ X) < card (−X)

by (intro psubset-card-mono) auto
moreover have step ′ X 6= {}

using less.prems by (auto simp: step ′-def)
moreover have step ′ X ⊆ TC

using step ′-subset dominant-TC less.prems by blast
ultimately obtain N where ∀n≥N . (step ′ ˆˆ Suc n) X = TC

using less(1)[of step ′ X]
by (auto simp del : funpow .simps simp add : funpow-Suc-right)

hence ∀n≥Suc N . (step ′ ˆˆ n) X = TC
using Suc-le-D by blast

thus ?thesis ..
qed

qed

8

3 Main proof

Lemma 1: If CO 6= TC, then there exists an element x ∈ CO that lies on
a cycle of length 3 and a cycle of length 4.

lemma cycle34 :
assumes CO 6= TC
shows ∃ x y w1 w2. x ∈ CO ∧ cycle [x , y , w1] ∧ cycle [x , y , w1, w2]

proof −
have CO ⊂ TC

using assms CO-subset-UC UC-subset-TC by blast
have ¬dominant CO

using 〈CO ⊂ TC 〉 by (auto simp: TC-def)
then obtain x y where x ∈ CO and y /∈ CO and x ∈ Dom y

using CO-nonempty total unfolding dominant-def by (metis Compl-iff)
hence y ∈ TC − CO

using 〈CO ⊂ TC 〉 dominant-TC
unfolding dominant-def by auto

We now show that there are at least two different elements w1, w2 ∈ Dom
x − Dom y and w.l.o.g. w1 ∈ Dom w2:

obtain w1 w2 where
w1 ∈ Dom x − Dom y and w2 ∈ Dom x − Dom y and
w1 6= w2 and w1 ∈ Dom w2

proof −
have card (Dom y − {x}) + 1 = card (Dom y)

using 〈x ∈ Dom y〉 by (metis Suc-eq-plus1 card-Suc-Diff1 finite-code)
also from 〈y ∈ TC − CO 〉 have card (Dom y) < card (Dom x)

using 〈x ∈ CO 〉 less-linear by (fastforce simp: CO-def is-arg-max-def)
finally have 2 ≤ card (Dom x) − card (Dom y − {x})

by auto
also have . . . ≤ card (Dom x − (Dom y − {x}))

using diff-card-le-card-Diff by (intro diff-card-le-card-Diff) auto
also have Dom x − (Dom y − {x}) = Dom x − Dom y

using Dom-props by auto
finally have card (Dom x − Dom y) ≥ 2

by auto
thus ?thesis

using total that
by (auto simp: card-le-Suc-iff numeral-2-eq-2)

(metis Diff-iff insertCI)
qed

With that, we have our two cycles:

hence cycle [x , y , w1] and cycle [x , y , w1, w2]
using 〈x ∈ Dom y〉 by (auto simp: cycle-def)

thus ?thesis
using 〈x ∈ CO 〉 by (auto simp: cycle-def)

qed

9

Lemma 2: If CO 6= TC, there exists a Copeland winner x that is in every
iteration of step on the initial set {x} past the 6th one. (this is part of
Corollary 1 by Herr Hübler)

lemma stable-element-exists:
assumes CO 6= TC
shows ∃ x∈CO . ∀n≥6 . x ∈ (step ˆˆ n) {x}

proof −
from assms obtain x y w1 w2

where x ∈ CO and cycle [x , y , w1] and cycle [x , y , w1, w2]
using cycle34 by auto

have ∀n≥6 . x ∈ (step ˆˆ n) {x}
proof safe

fix n :: nat
assume n ≥ 6
have ∃ k l . n = 3 ∗ k + 4 ∗ l

using 〈n ≥ 6 〉 by presburger
then obtain k l where kl : n = 3 ∗ k + 4 ∗ l

by auto

define xs where xs = repeat k [x , y , w1] @ repeat l [x , y , w1, w2]
have length-xs: length xs = n

by (auto simp: xs-def kl)
have [simp]: xs 6= []

using 〈n ≥ 6 〉 length-xs by auto
hence [simp]: hd xs = x

by (cases k = 0 ; cases l = 0) (auto simp: xs-def hd-append)

have cycle xs
using 〈cycle [x , y , w1]〉 and 〈cycle [x , y , w1, w2]〉

by (cases k = 0 ; cases l = 0) (auto simp: xs-def)
hence x ∈ (step ˆˆ length xs) {x}

by (intro steps-chain) (use 〈x ∈ CO 〉 in 〈auto simp: cycle-def 〉)
thus x ∈ (step ˆˆ n) {x}

by (simp add : length-xs)
qed
thus ?thesis

using 〈x ∈ CO 〉 by blast
qed

10

Corollary 1: If CO 6= TC, Herr Schmidmeier’s algorithm returns TC in
finitely many steps.

corollary steps-converges-to-TC :
assumes CO 6= TC and CO ⊆ X and X ⊆ TC
shows ∃N . ∀n≥N . (step ˆˆ n) X = TC

proof −
from 〈CO 6= TC 〉 obtain x where x : x ∈ CO ∀n≥6 . x ∈ (step ˆˆ n) {x}

using stable-element-exists by blast

have ∃N . ∀n≥N . (step ′ ˆˆ n) {x} = TC
using x CO-subset-UC UC-subset-TC
by (intro step ′-stabilises) auto

then obtain N where N : ∀n≥N . (step ′ ˆˆ n) {x} = TC ..

have (step ˆˆ n) X = TC if n: n ≥ N + 6 for n
proof

have TC = (step ′ ˆˆ (n − 6)) {x}
using N n by auto

also have . . . ⊆ (step ˆˆ n) {x}
proof

fix y assume y ∈ (step ′ ˆˆ (n − 6)) {x}
then obtain k where k : k ≤ n − 6 y ∈ (step ˆˆ k) {x}

by (auto simp: funpow-step ′-eq)
have y ∈ (step ˆˆ k) {x}

by fact
also have (step ˆˆ k) {x} ⊆ (step ˆˆ k) ((step ˆˆ (n − 6 − k + 6)) {x})

using x by (intro steps-mono) auto
also have . . . = (step ˆˆ (k + (n − 6 − k + 6))) {x}

by (subst funpow-add) auto
also have k + (n − 6 − k + 6) = n

using k n by auto
finally show y ∈ (step ˆˆ n) {x} .

qed
also have . . . ⊆ (step ˆˆ n) X

using x assms by (intro steps-mono) auto
finally show TC ⊆

next
show (step ˆˆ n) X ⊆ TC

using x CO-subset-UC UC-subset-TC assms
by (intro steps-subset dominant-TC) auto

qed
thus ?thesis by blast

qed

end

11

	Auxiliary facts
	Tournaments
	Basic concepts
	Chains and cycles
	The two iterative algorithms for TC

	Main proof

