Exercise 1 (Confluence of β-Reduction)

In the lecture we have shown the confluence of \longrightarrow_{β} using the diamond property of parallel β-reduction. In this exercise, we develop an alternative proof.

We define the operation $*$ on λ-terms inductively over the structure of terms:

$$
\begin{aligned}
x^{*} & =x \\
(\lambda x . t)^{*} & =\lambda x \cdot t^{*} \\
\left(t_{1} t_{2}\right)^{*} & =t_{1}^{*} t_{2}^{*} \quad \text { if } t_{1} t_{2} \text { is not a } \beta \text {-redex. } \\
\left(\left(\lambda x . t_{1}\right) t_{2}\right)^{*} & =t_{1}^{*}\left[t_{2}^{*} / x\right]
\end{aligned}
$$

a) Show that we have for two arbitrary λ-terms s and $t: s>t \Longrightarrow t>s^{*}$
b) Show that \longrightarrow_{β} is confluent.

Exercise 2 (Parallel Beta Reduction)

Show:

$$
s>t \Longrightarrow s \longrightarrow_{\beta}^{*} t
$$

Exercise 3 (Predecessor and Tail)

a) Define a predecessor function pred on church numerals.
b) Use the same idea to define tl on the list encoding from homework 2.5 .

Homework 4 (Parallel Beta Reduction \& Substitution)

Show:

$$
s>s^{\prime} \wedge t>t^{\prime} \Longrightarrow s[t / x]>s^{\prime}\left[t^{\prime} / x\right]
$$

Homework 5 (Equivalence modulo β-conversion)

Assume that we add the additional axiom

$$
\lambda x y \cdot x={ }_{\beta} \lambda x y \cdot y
$$

a) Show that under this assumption $t={ }_{\beta} t^{\prime}$ for all t, t^{\prime}.
b) Repeat the same for the axiom $\lambda x \cdot x={ }_{\beta} \lambda x y . y x$.

Homework 6 (Böhm's Theorem)

Böhm's Theorem states that for arbitrary closed terms $M \neq N$ without constant atoms in $\beta \eta$-normal form, there exist $n \geq 0$ and L_{1}, \ldots, L_{n} such that:

$$
M L_{1} \ldots L_{n} x y \rightarrow_{\beta}^{*} x \text { and } N L_{1} \ldots L_{n} x y \rightarrow_{\beta}^{*} y .
$$

That is, we can tell M and N apart. Show the following two special cases:
a) $M=\lambda x y z \cdot x z(y z)$ and $N=\lambda x y z \cdot x(y z)$
b) $M=\lambda x y \cdot x(y y)$ and $N=\lambda x y \cdot x(y x)$

