Technische Universität München Institut für Informatik

Lambda Calculus Winter Term 2021/22

Prof. Tobias Nipkow, Ph.D.

Lukas Stevens

Exercise Sheet 4

Exercise 1 (Confluence of β -Reduction)

In the lecture we have shown the confluence of \longrightarrow_{β} using the diamond property of parallel β -reduction. In this exercise, we develop an alternative proof.

We define the operation * on λ -terms inductively over the structure of terms:

$$x^* = x$$
 $(\lambda x. t)^* = \lambda x. t^*$
 $(t_1 t_2)^* = t_1^* t_2^*$ if $t_1 t_2$ is not a β -redex.
 $((\lambda x. t_1) t_2)^* = t_1^* [t_2^*/x]$

- a) Show that we have for two arbitrary λ -terms s and t: $s > t \implies t > s^*$
- b) Show that \longrightarrow_{β} is confluent.

Exercise 2 (Parallel Beta Reduction)

Show:

$$s > t \Longrightarrow s \longrightarrow_{\beta}^{*} t$$

Exercise 3 (Predecessor and Tail)

- a) Define a predecessor function **pred** on church numerals.
- b) Use the same idea to define the list encoding from homework 2.5.

Homework 4 (Parallel Beta Reduction & Substitution)

Show:

$$s > s' \land t > t' \Longrightarrow s[t/x] > s'[t'/x]$$

Homework 5 (Equivalence modulo β -conversion)

Assume that we add the additional axiom

$$\lambda x \ y. \ x =_{\beta} \lambda x \ y. \ y$$

a) Show that under this assumption $t = \beta t'$ for all t, t'.

b) Repeat the same for the axiom λx . $x =_{\beta} \lambda x \ y$. $y \ x$.

Homework 6 (Böhm's Theorem)

Böhm's Theorem states that for arbitrary closed terms $M \neq N$ without constant atoms in $\beta \eta$ -normal form, there exist $n \geq 0$ and L_1, \ldots, L_n such that:

$$M L_1 \ldots L_n x y \rightarrow_{\beta}^* x \text{ and } N L_1 \ldots L_n x y \rightarrow_{\beta}^* y.$$

That is, we can tell M and N apart. Show the following two special cases:

a)
$$M = \lambda x y z$$
. $x z (y z)$ and $N = \lambda x y z$. $x (y z)$

b)
$$M = \lambda x y. x (y y)$$
 and $N = \lambda x y. x (y x)$