Technische Universität München Institut für Informatik

Prof. Tobias Nipkow, Ph.D. Lukas Stevens

Lambda Calculus Winter Term 2021/22 Exercise Sheet 7

Exercise 1 (Progress Property)

Let t be a closed and well-typed term, i.e. $[] \vdash t : \tau$ for some τ . Show that t is either a value or there is a t' such that $t \to_{cbv} t'$.

Exercise 2 (Normal Form)

Show that every type-correct λ^{\rightarrow} -term has a β -normal form.

Homework 3 (Typing)

a) Prove:

$$[] \vdash (\lambda x \colon \tau_2 \to \tau_3. \ \lambda y \colon \tau_1 \to \tau_2. \ \lambda z \colon \tau_1. \ x (y z)) \colon (\tau_2 \to \tau_3) \to (\tau_1 \to \tau_2) \to \tau_1 \to \tau_3$$

b) Give suitable solutions for $?\tau_1$, $?\tau_2$, $?\tau_3$ and $?\tau_4$ and prove that the term is type-correct given your solution.

$$[] \vdash \lambda x : ?\tau_1. \ \lambda y : ?\tau_2. \ \lambda z : ?\tau_3. \ x \ y \ (y \ z) : ?\tau_4$$

Homework 4 (β -reduction preserves types)

A type system has the subject reduction property if evaluating an expression preserves its type. Prove that the simply typed λ -calculus (λ^{\rightarrow}) has the subject reduction property:

$$\Gamma \vdash t : \tau \land t \rightarrow_{\beta} t' \Longrightarrow \Gamma \vdash t' : \tau$$

Hints: Use induction over the inductive definition of \rightarrow_{β} (Def. 1.2.2). State your inductive hypotheses precisely – it may help to introduce a binary predicate P(t, t') to express the property you are proving by induction. Also note that the proof will require rule inversion: Given $\Gamma \vdash t : \tau$, the shape of t (variable, application, or λ -abstraction) may determine which typing rule must have been used to derive the typing judgment.

Within your proof, you are free to use the following lemma about substitution:

$$\Gamma \vdash u \colon \tau_0 \land \Gamma[x \colon \tau_0] \vdash t \colon \tau \Longrightarrow \Gamma \vdash t[u/x] \colon \tau \tag{1}$$

Homework 5 (Implementation of multiset-ordering and reduction)

Implement the multiset ordering and the reduction strategy from the second tutorial exercise in your favorite programming language.