Technische Universität München
Institut für Informatik
Prof. Tobias Nipkow, Ph.D.
Lukas Stevens

Exercise 1 (Fixed-point Combinator)

- Use a fixed-point combinator to compute the length of lists on the encoding given in the last tutorial.
- Find an easier solution for the encoding from the last homework.

Solution

- We use the Y-combinator:

$$
\mathrm{y}:=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

The Y-combinator satisfies the property y $f={ }_{\beta}^{*} f(y f)$.
Recall how the Church numerals are implemented:

$$
\text { zero }:=\lambda f x . x \quad \text { succ }:=\lambda n f x . f(n x)
$$

In a programming language with recursion, length would be implemented as follows:

```
len x = if null x then O else Succ (len (tl x))
```

We obtain the following definition:

$$
\text { length }:=\mathrm{y}(\lambda l x .(\text { null } x) \text { zero }(\operatorname{succ}(l(\mathrm{t} \mid x)))
$$

- length $:=\lambda l . l(\lambda x$. succ) $\underline{0}$

Exercise 2 (β-reduction on de Bruijn Preserves Substitution)

We consider an alternative representation of λ-terms that is due to de Bruijn. In this representation, λ-terms are defined according to the following grammar:

$$
d::=i \in \mathbb{N}\left|d_{1} d_{2}\right| \lambda d
$$

Define substitution and β-reduction on de Bruijn terms.
Now restate Lemma 1.2.5 for de Bruijn terms and prove it:

$$
s \rightarrow_{\beta} s^{\prime} \Longrightarrow s[u / x] \rightarrow_{\beta} s^{\prime}[u / x]
$$

Solution

We now have $(\lambda d) e \rightarrow_{\beta} d[e / 0]$. The other cases for \rightarrow_{β} remain the same as before. Similarly to the lecture, we first prove the key property (*)

$$
i<j+1 \longrightarrow t\left[v \uparrow_{i} / j+1\right][u[v / j] / i]=t[u / i][v / j]
$$

by induction on t. Now

$$
s \rightarrow_{\beta} s^{\prime} \Longrightarrow s[u / i] \rightarrow_{\beta} s^{\prime}[u / i]
$$

can be proved by induction on \rightarrow_{β} for arbitrary u and i.
The base case is the hardest. We need to show

$$
((\lambda s) t)[u / i] \rightarrow_{\beta} s[t / 0][u / i]
$$

for arbitrary s, t. Proof:

$$
\begin{align*}
&((\lambda s) t)[u / i] \\
&=\left(\lambda s\left[u \uparrow_{0} / i+1\right]\right) t[u / i] \\
& \rightarrow_{\beta} s\left[u \uparrow_{0} / i+1\right][t[u / i] / 0] \tag{*}\\
&= s[t / 0][u / i]
\end{align*}
$$

$$
=\left(\lambda s\left[u \uparrow_{0} / i+1\right]\right) t[u / i] \quad \text { Def. of substitution }
$$

The other cases follow trivially from the rules of \rightarrow_{β} and the definition of substitution.

$$
\begin{aligned}
& i \uparrow_{l}=\left\{\begin{array}{l}
i, \text { if } i<l \\
i+1, \text { if } i \geq l
\end{array}\right. \\
& \left(d_{1} d_{2}\right) \uparrow_{l}=d_{1} \uparrow_{l} d_{2} \uparrow_{l} \\
& (\lambda d) \uparrow_{l}=\lambda d \uparrow_{l+1} \\
& i[t / j]=\left\{\begin{array}{l}
i \text { if } i<j \\
t \text { if } i=j \\
i-1 \text { if } i>j
\end{array}\right. \\
& \left(d_{1} d_{2}\right)[t / j]=\left(d_{1}[t / j]\right)\left(d_{2}[t / j]\right) \\
& (\lambda d)[t / j]=\lambda\left(d\left[t \uparrow_{0} / j+1\right]\right)
\end{aligned}
$$

Homework 3 (Multiplication)

Define multiplication using fix and prove its correctness. You can assume that you are given a predecessor function pred such that:

- pred $\underline{0} \rightarrow_{\beta}^{*} \underline{0}$
- $\operatorname{pred}(\operatorname{succ} n) \rightarrow_{\beta}^{*} n$

Homework 4 (Efficient Substitution on de Bruijn)

We define a new lifting operator $-\uparrow_{-}^{-}$:

$$
\begin{aligned}
i \uparrow_{l}^{n} & =\left\{\begin{array}{l}
i, \text { if } i<l \\
i+n, \text { if } i \geq l
\end{array}\right. \\
\left(d_{1} d_{2}\right) \uparrow_{l}^{n} & =d_{1} \uparrow_{l}^{n} d_{2} \uparrow_{l}^{n} \\
(\lambda d) \uparrow_{l}^{n} & =\lambda d \uparrow_{l+1}^{n}
\end{aligned}
$$

Use $-\uparrow_{-}^{-}$to define a more efficient version of substitution for de Bruijn terms that only applies lifting in the case that a variable is actually replaced by a term. Prove that $t[\mathrm{~s} / 0]$ yields the same result for both, your new version and the version from the tutorial. Hint: Find a suitable generalization first.

Homework 5 (Expanding Lets)

We have a language with let-expressions, i.e.:

$$
t::=v|t t| \text { let } v=t \text { in } t
$$

Write a program which expands all let-expressions. The let-semantics are:

$$
\left(\text { let } v=t_{1} \text { in } t_{2}\right)=\left(\lambda v . t_{2}\right) t_{1}
$$

If you want to use a language different from ML, Ocaml, Haskell, Java, and Python, please talk to the tutor first.

