Technische Universität München
Institut für Informatik
Prof. Tobias Nipkow, Ph.D.
Lukas Stevens

Lambda Calculus
Winter Term 2021/22
Solutions to Exercise Sheet 4

Exercise 1 (Confluence of β-Reduction)

In the lecture we have shown the confluence of \longrightarrow_{β} using the diamond property of parallel β-reduction. In this exercise, we develop an alternative proof.

We define the operation $*$ on λ-terms inductively over the structure of terms:

$$
\begin{aligned}
x^{*} & =x \\
(\lambda x . t)^{*} & =\lambda x \cdot t^{*} \\
\left(t_{1} t_{2}\right)^{*} & =t_{1}^{*} t_{2}^{*} \quad \text { if } t_{1} t_{2} \text { is not a } \beta \text {-redex. } \\
\left(\left(\lambda x . t_{1}\right) t_{2}\right)^{*} & =t_{1}^{*}\left[t_{2}^{*} / x\right]
\end{aligned}
$$

a) Show that we have for two arbitrary λ-terms s and $t: s>t \Longrightarrow t>s^{*}$
b) Show that \longrightarrow_{β} is confluent.

Solution

a) The proof of

$$
s>t \quad \Longrightarrow \quad t>s^{*}
$$

is done by structural induction on s. In the following, we will skip instances of $s>s$, as we can easily prove $s>s^{*}$ by another structural induction on s.

1st case: $s=x$.
Let $x>t$. Hence $t=x$. Thus $t=x>x=x^{*}=s^{*}$.
2nd case: $s=\lambda x . s_{1}$.
Let $\lambda x . s_{1}>t$. By case analysis on the derivation of $s>t$ we obtain $t=\lambda x . t_{1}$ for an appropriate t_{1} and we have $s_{1}>t_{1}$. As s_{1} is a subterm of s, the induction hypothesis implies $t_{1}>s_{1}^{*}$. Thus we get $t=\lambda x . t_{1}>\lambda x . s_{1}^{*}=s^{*}$.

3rd case: $s=s_{1} s_{2}$, but no s is not a β-redex.
Let $s_{1} s_{2}>t$. Then $t=t_{1} t_{2}$ with $s_{1}>t_{1}$ and $s_{2}>t_{2}$ (again this follows by case analysis using the inductive definition of $>$). We get the induction hypotheses $t_{1}>s_{1}^{*}$ and $t_{2}>s_{2}^{*}$. By the definition of $>$ this implies $t_{1} t_{2}>s_{1}^{*} s_{2}^{*}=s^{*}$.

4th case: $s=\left(\lambda x . s_{1}\right) s_{2}$.
Let $\left(\lambda x . s_{1}\right) s_{2}>t$. Then there is t_{1}, t_{2} with $s_{1}>t_{1}$ and $s_{2}>t_{2}$ and we have $t=\left(\lambda x . t_{1}\right) t_{2}$ or $t=t_{1}\left[t_{2} / x\right]$, depending on the rule used to derive $s>t$. Note that the first case actually requires a nested case distinction: first we consider the case that $t=t_{1}^{\prime} t_{2}$ by the third rule in the definition of $>$. This requires that $\left(\lambda x . s_{1}\right)>t_{1}^{\prime}$. Hence, $t_{1}^{\prime}=\left(\lambda x . t_{1}\right)$ and $s_{1}>t_{1}$ follows by another case distinction on $\left(\lambda x . s_{1}\right)>t_{1}^{\prime}$.
Case 4.1 $t=\left(\lambda x, t_{1}\right) t_{2}$.
By the induction hypotheses $t_{1}>s_{1}^{*}$ and $t_{2}>s_{2}^{*}$, we get $t=\left(\lambda x . t_{1}\right) t_{2}>$ $s_{1}^{*}\left[s_{2}^{*} / x\right]=s^{*}$.
Case $4.2 t=t_{1}\left[t_{2} / x\right]$.
By the induction hypotheses $t_{1}>s_{1}^{*}$ and $t_{2}>s_{2}^{*}$, and the substitution propery of $>$ (Lemma 1.2.13), we get $t=t_{1}\left[t_{2} / x\right]>s_{1}^{*}\left[s_{2}^{*} / x\right]=s^{*}$.
b) Part a) immediately implies the diamond property of $>$: Let $s>t_{1}$ and $s>t_{2}$. Then we have both, $t_{1}>s^{*}$ and $t_{2}>s^{*}$. Like in the lecture we obtain the confluence of \longrightarrow_{β} using the diamond property.

Exercise 2 (Parallel Beta Reduction)

Show:

$$
s>t \Longrightarrow s \longrightarrow_{\beta}^{*} t
$$

Solution

Proof by rule induction on $>$.
Case $s>s$: We have that $s=t$ and $s \longrightarrow_{\beta}^{*} s$.
Case $\lambda x . s>\lambda x . s^{\prime}$: As an induction hypothesis we get $s \longrightarrow_{\beta}^{*} s^{\prime}$. By Lemma 1.2.3 it then holds that $\lambda x . s \longrightarrow_{\beta}^{*} \lambda x . s^{\prime}$. Consequently, we have $\lambda x . s \longrightarrow_{\beta}^{*} \lambda x . s^{\prime}$.
Case $s t>s^{\prime} t^{\prime}$: As induction hypotheses we get $s \longrightarrow_{\beta}^{*} s^{\prime}$ and $t \longrightarrow_{\beta}^{*} t^{\prime}$. With Lemma 1.2.3 we get $s t \longrightarrow{ }_{\beta}^{*} s^{\prime} t \longrightarrow{ }_{\beta}^{*} s^{\prime} t^{\prime}$ and therefore $s t \longrightarrow{ }_{\beta}^{*} s^{\prime} t^{\prime}$.
Case $(\lambda x . s) t>s^{\prime}\left[t^{\prime} / x\right]$: As induction hypotheses we get $s \longrightarrow_{\beta}^{*} s^{\prime}$ and $t \longrightarrow_{\beta}^{*} t^{\prime}$. With Lemma 1.2.3 it holds that $(\lambda x . s) t \longrightarrow_{\beta}^{*}\left(\lambda x . s^{\prime}\right) t \longrightarrow_{\beta}^{*}\left(\lambda x . s^{\prime}\right) t^{\prime} \longrightarrow_{\beta} s^{\prime}\left[t^{\prime} / x\right]$ and thus $(\lambda x . s) t \longrightarrow_{\beta}^{*}\left(\lambda x . s^{\prime}\right) t^{\prime}$.

Exercise 3 (Predecessor and Tail)

a) Define a predecessor function pred on church numerals.
b) Use the same idea to define tl on the list encoding from homework 2.5 .

Solution

a)

$$
\begin{aligned}
\mathrm{zz} & =\text { pair } \underline{0} \underline{0} \\
\mathrm{ss} & =\lambda p . \operatorname{pair}(\operatorname{snd} p)(\operatorname{succ}(\operatorname{snd} p)) \\
\text { pred } & =\lambda m . \mathrm{fst}(m \mathrm{ss} \mathrm{zz})
\end{aligned}
$$

b)

$$
\begin{aligned}
\mathrm{nxt} & =\lambda c . \lambda x p . \text { pair }(\text { snd } p)(c x(\text { snd } p)) \\
\mathrm{tl} & =\lambda l . \lambda c n . \text { fst }(l(\operatorname{nxt} c)(\text { pair } n n))
\end{aligned}
$$

Homework 4 (Parallel Beta Reduction \& Substitution)

Show:

$$
s>s^{\prime} \wedge t>t^{\prime} \Longrightarrow s[t / x]>s^{\prime}\left[t^{\prime} / x\right]
$$

Homework 5 (Equivalence modulo β-conversion)

Assume that we add the additional axiom

$$
\lambda x y \cdot x={ }_{\beta} \lambda x y \cdot y
$$

a) Show that under this assumption $t={ }_{\beta} t^{\prime}$ for all t, t^{\prime}.
b) Repeat the same for the axiom $\lambda x \cdot x={ }_{\beta} \lambda x y . y x$.

Homework 6 (Böhm's Theorem)

Böhm's Theorem states that for arbitrary closed terms $M \neq N$ without constant atoms in $\beta \eta$-normal form, there exist $n \geq 0$ and L_{1}, \ldots, L_{n} such that:

$$
M L_{1} \ldots L_{n} x y \rightarrow_{\beta}^{*} x \text { and } N L_{1} \ldots L_{n} x y \rightarrow_{\beta}^{*} y .
$$

That is, we can tell M and N apart. Show the following two special cases:
a) $M=\lambda x y z \cdot x z(y z)$ and $N=\lambda x y z \cdot x(y z)$
b) $M=\lambda x y \cdot x(y y)$ and $N=\lambda x y \cdot x(y x)$

