Technische Universität München Institut für Informatik Prof. Tobias Nipkow, Ph.D. Lukas Stevens Lambda Calculus Winter Term 2021/22 Solutions to Exercise Sheet 5

Exercise 1 (Confluence & Commutation)

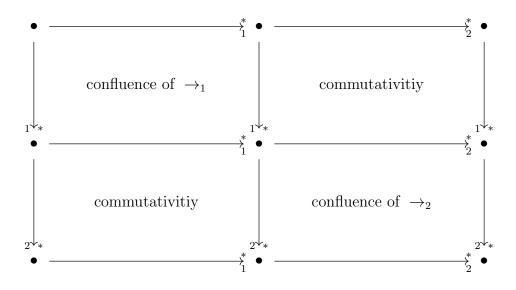
Show: If \rightarrow_1 and \rightarrow_2 are confluent, and if \rightarrow_1^* and \rightarrow_2^* commute, then $\rightarrow_{12} := \rightarrow_1 \cup \rightarrow_2$ is also confluent.

Solution

Lemma A.3.2 from the lecture. The key idea is to consider $\rightarrow_1^* \circ \rightarrow_2^*$ as \rightarrow_{12}^* unfolds into iterations of this relation, i.e. $(\rightarrow_1^* \circ \rightarrow_2^*)^* = \rightarrow_{12}^*$. More precisely:

$$\rightarrow_{12} \subseteq \rightarrow_1^* \circ \rightarrow_2^* \subseteq \rightarrow_{12}^* \qquad (*)$$

The relation $\rightarrow_1^* \circ \rightarrow_2^*$ has the diamond property:



With (*) and Lemma A.2.5 it immediately follows that \rightarrow_{12} is confluent.

Exercise 2 (Strong Confluence)

A relation \rightarrow is said to be strongly confluent iff:

 $t_2 \leftarrow s \rightarrow t_1 \Longrightarrow \exists u. \ t_2 \rightarrow^= u \ ^* \leftarrow t_1$

Show that every strongly confluent relation is also confluent.

Solution

We show that every strongly confluent relation is also semi-confluent (see homework). To do so, we will show the stronger property

$$t_2 \xrightarrow{n} \leftarrow s \rightarrow t_1 \Longrightarrow \exists u. t_2 \rightarrow^= u \xrightarrow{*} \leftarrow t_1$$

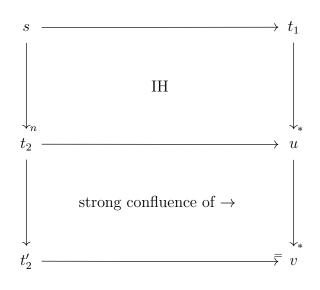
by induction on n. The base case for n = 0 is easy: $s \stackrel{0}{\leftarrow} s \rightarrow t_1 \implies s \stackrel{=}{\Longrightarrow} t_1 \stackrel{*}{\leftarrow} t_1$. For the induction step, we assume the statement for some u as the induction hypothesis. Furthermore, we assume $t'_2 \leftarrow t_2 \stackrel{n}{\leftarrow} s \rightarrow t_1$ for some t'_2 . We need to show that there exists a v with $t'_2 \rightarrow v \stackrel{*}{\leftarrow} v_1$.

We make a case distinction on $t_2 \rightarrow^= u$.

When $t_2 = u$ we get $t_1 \to^* t_2$ with the IH and thus $t'_2 \to^= t'_2 * \leftarrow t_1$ since $t_2 \to t'_2$. If $t_2 \to u$, then from strong confluence of r with $t'_2 \leftarrow t_2 \to u$ we obtain a v such that

$$u \to^* v \wedge t'_2 \to^= v$$

Together with the induction hypothesis $t_1 \to^* u$, we get $t'_2 \to^= v * \leftarrow t_1$. As a picture:



Exercise 3 (Normal Forms)

Recall the inductive definition of the set NF of *normal forms*:

$$\frac{t \in \mathrm{NF}}{\lambda x. \ t \in \mathrm{NF}}$$

$$\underline{n \ge 0 \qquad t_1 \in \mathrm{NF} \qquad t_2 \in \mathrm{NF} \qquad \dots \qquad t_n \in \mathrm{NF}}$$

$$x \ t_1 \ t_2 \ \dots \ t_n \in \mathrm{NF}$$

Show that this set precisely captures all normal forms, i.e.:

$$t \in \mathrm{NF} \Leftrightarrow \nexists t'. \ t \to_{\beta} t'$$

Solution

We prove the direction \implies by an induction on the derivation of $t \in NF$.

For the first case, to work towards a contradiction, we assume that $\lambda x. t \to_{\beta} \lambda x. t'$ and the induction hypothesis $\nexists t'. t \to_{\beta} t'$. By analysing the derivation of the former (\to_{β}) , we get $t \to_{\beta} t'$ and thus a contradiction with the latter.

In the second case we have (IH) $\nexists t'$. $t_i \rightarrow_{\beta} t'$ for $1 \leq i \leq n$ and $n \geq 0$. We show this case by another induction on n. In the case n = 0 we get just x which is not a redex. Now assume $\nexists t'$. $x t_1 t_2 \ldots t_n \rightarrow_{\beta} t'$ as the induction hypothesis, and $x t_1 t_2 \ldots t_n t_{n+1} \rightarrow_{\beta} t'$ for the sake of contradiction. By analysing the derivation of the latter, we can only conclude $\exists t'. t_{n+1} \rightarrow_{\beta} t'$, which manifests a contradiction.

We prove the other direction indirectly by structural induction on t, i.e. we assume $t \notin NF$ and show $\exists t'. t \rightarrow_{\beta} t'$.

The interesting case is the application. We assume $t_1 \notin NF \implies \exists t'. t_1 \rightarrow_{\beta} t'$ and $t_2 \notin NF \implies \exists t'. t_2 \rightarrow_{\beta} t'$ as the induction hypothesis, and $t \notin NF$. The cases where $t_1 \notin NF$ or $t_2 \notin NF$ are immediate by the induction hypothesis. Consider the case $t_1, t_2 \in NF$. We analyze the derivation of $t_1 \in NF$. In the case of the rules for variables and applications, we can immediately use the rule for applications to derive the contradiction $t_1 t_2 \in NF$. Thus $t_1 = \lambda x$. t'_1 for some x, t'_1 , and we get: $t_1 t_2 \rightarrow_{\beta} t'_1[t_2/x]$.

Homework 4 (Semi-Confluence)

A relation \rightarrow is said to be *semi-confluent* iff:

 $t_2 \stackrel{*}{\leftarrow} s \to t_1 \Longrightarrow \exists u. \ t_2 \to^* u \stackrel{*}{\leftarrow} t_1$

Show that \rightarrow is *semi-confluent* if and only if it is *confluent*.

Homework 5 (Weak Diamond Property)

Assume that \rightarrow has the following weaker diamond property:

 $t_2 \leftarrow s \rightarrow t_1 \land t_1 \neq t_2 \Longrightarrow \exists u. \ t_2 \rightarrow u \leftarrow t_1.$

- a) Is it still the case that every element is either in normal form or has no normal form?
- b) Show that if t has a normal form, then all its reductions to its normal form have the same length.

Homework 6 (Normal Forms & Big Step)

Show:

$$t \in \mathrm{NF} \land t \Rightarrow_n u \Longrightarrow u = t$$