Technische Universität München
Institut für Informatik

Prof. Tobias Nipkow, Ph.D.
Lukas Stevens

Lambda Calculus
Winter Term 2021/22
Solutions to Exercise Sheet 6

Exercise 1 (Reduction Relation with Closures)

For the evaluation of lambda terms that is closer to evaluation of programs in functional programming languages, one usually replaces textual substitution $t[v / x]$ with a more lazy approach that records the binding $x \mapsto v$ in an environment. These bindings are used whenever we need the value of a variable v.

In this approach abstractions $\lambda x . t$ do not evaluate to themselves, but to a pair $(\lambda x . t)[e]$, where e is the current environment. We call such pairs function closures.
a) Define a big-step reduction relation for the lambda calculus with function closures and environments.
b) Add explicit error handling for the case where the binding of a free variable v cannot be found in the enviroment. Introduce an explicit value abort to indicate such an exception in the relation.

Solution

a) First recall the standard $\Rightarrow_{c b v}$ relation:

$$
\begin{gathered}
\lambda x . t \Rightarrow_{c b v} \lambda x . t \\
\frac{s \Rightarrow_{c b v} \lambda x . s^{\prime} \quad t \Rightarrow_{c b v} v \quad s^{\prime}[v / x] \Rightarrow_{c b v} w}{s t \Rightarrow_{c b v} w}
\end{gathered}
$$

Note that there are no rules for variables since the reduction relation only considers closed terms. Now we define the relation for lambda calculus with closures:

$$
\begin{gathered}
\frac{e(x)=v}{e \vdash x \Rightarrow_{c b v} v} \quad e \vdash \lambda x . t \Rightarrow_{c b v}(\lambda x . v)[e] \\
\frac{e \vdash t_{1} \Rightarrow_{c b v}(\lambda x . t)\left[e^{\prime}\right] \quad e \vdash t_{2} \Rightarrow_{c b v} v^{\prime} \quad e^{\prime}+\left(x \mapsto v^{\prime}\right) \vdash t \Rightarrow_{c b v} v}{e \vdash t_{1} t_{2} \Rightarrow_{c b v} v}
\end{gathered}
$$

In the following example empty closures for lambdas are omitted for better readability:

$$
\overline{() \vdash(\lambda x y \cdot x) \Rightarrow_{c b v}(\lambda x y \cdot x)}
$$

$$
\frac{\overline{() \vdash(\lambda u \cdot u) \Rightarrow_{c b v}(\lambda u \cdot u)} \quad \overline{(x \mapsto(\lambda u \cdot u)) \vdash(\lambda y \cdot x) \Rightarrow_{c b v}(\lambda y \cdot x)[x \mapsto(\lambda u \cdot u)]}}{() \vdash(\lambda x y . x)(\lambda u \cdot u) \Rightarrow_{c b v}(\lambda y \cdot x)[x \mapsto(\lambda u \cdot u)]}
$$

$$
\begin{gathered}
\frac{\text { See above }}{() \vdash(\lambda x y \cdot x)(\lambda u \cdot u) \Rightarrow_{c b v}(\lambda y \cdot x)[x \mapsto(\lambda u \cdot u)]} \\
\frac{e(x)=(\lambda u \cdot u)}{() \vdash(\lambda v \cdot v) \Rightarrow_{c b v}(\lambda v \cdot v)} \quad \frac{e(\lambda \mapsto \cdot u))+(y \mapsto(\lambda v \cdot v)) \vdash x \Rightarrow_{c b v}(\lambda u \cdot u)}{(x \mapsto(\lambda u \cdot)}
\end{gathered}
$$

b) We just need to add rules to propagate errors, and modify the existing rules to ensure that no subexpression evaluates to abort.

$$
\begin{gathered}
\frac{x \notin e}{e \vdash x \Rightarrow_{c b v} \text { abort }} \quad \frac{e(x)=v}{e \vdash x \Rightarrow_{c b v} v} \quad e \vdash \lambda x . t \Rightarrow_{c b v}(\lambda x . t)[e] \\
\frac{e \vdash t_{2} \Rightarrow_{c b v} v^{\prime} \quad}{e \vdash t_{1} \Rightarrow_{c b v}(\lambda x . t)\left[e^{\prime}\right]} \\
\frac{e^{\prime}+\left(x \mapsto v^{\prime}\right) \vdash t \Rightarrow_{c b v} v}{} \vdash v^{\prime} \neq \text { abort } \\
e \vdash t_{1} t_{2} \Rightarrow_{c b v} v \\
e \vdash t_{1} \Rightarrow_{c b v} \text { abort } \quad e \vdash t_{2} \Rightarrow_{c b v} v \quad v \neq \text { abort } \\
\frac{e \vdash t_{2} \Rightarrow_{c b v} \text { abort }}{e \vdash t_{1} t_{2} \Rightarrow_{c b v} \text { abort }} \\
\end{gathered}
$$

Exercise 2 (Better Translation Algorithm)

Give a variant of the translation algorithm that produces shorter terms. More specifically, define a variant of $\lambda^{*} x$. t that analyzes more precisely where x actually appears in t.

Solution

$$
\begin{aligned}
\lambda^{*} x . x & =I & & \\
\lambda^{*} x . X & =\mathrm{K} X & & \text { if } x \notin F V(X) \\
\lambda^{*} x . X x & =X & & \text { if } x \notin F V(X) \\
\lambda^{*} x .(X Y) & =\mathrm{B} X\left(\lambda^{*} x . Y\right) & & \text { if } x \notin F V(X) \wedge x \in F V(Y) \\
\lambda^{*} x .(Y X) & =\mathrm{C}\left(\lambda^{*} x . Y\right) X & & \text { if } x \notin F V(X) \wedge x \in F V(Y) \\
\lambda^{*} x .(X Y) & =\mathrm{S}\left(\lambda^{*} x . X\right)\left(\lambda^{*} x . Y\right) & & \text { if } x \in F V(X, Y)
\end{aligned}
$$

where $B:=S(K S) K$ and $C:=S(B B S)(K K)$. B and C fulfill the following properties

$$
\begin{array}{r}
\mathrm{B} X Y Z \rightarrow^{*} X(Y Z) \\
\mathrm{C} X Y Z \rightarrow^{*} X Z Y
\end{array}
$$

Homework 3 (Proofs with Small-steps and Big-steps)

Let $\omega:=\lambda x, x x$ and

$$
t:=(\lambda x \cdot(\lambda x y \cdot x) z y)(\omega \omega((\lambda x y \cdot x) y)) .
$$

Prove the following:
a) $t \Rightarrow_{n} z$
b) $t \rightarrow_{c b v}^{3} t$
c) $t \not \nrightarrow c_{c b n}^{+} t$

Homework 4 (More Combinators)

Find combinators O and W such that:

$$
\begin{gathered}
\mathrm{O} \rightarrow^{+} \mathrm{O} \\
\mathrm{~W} X Y \rightarrow^{*} X Y Y
\end{gathered}
$$

Homework 5 (Mocking Birds)

Consider a combinatory logic that only provides the basic combinators B and M (the "mocking bird") where:

$$
\begin{gathered}
\mathrm{B} X Y Z \rightarrow^{*} X\binom{Y}{\hline} \\
\mathrm{M} X \rightarrow^{*} X X
\end{gathered}
$$

Prove the following properties of this logic:
a) For every combinator X, there is a combinator Y such that $Y \rightarrow^{*} X Y$.
b) For all combinators U and W, there exist combinators X and Y such that $Y \rightarrow{ }^{*} U X$ and $X \rightarrow{ }^{*} W Y$.

Homework 6 (Correctness of the Translation Algorithm)

Show that the translation algorithm given in the tutorial is correct. That is, show that it fulfills the following property:

$$
\left(\lambda^{*} x . X\right) Y \rightarrow^{*} X[Y / x]
$$

