Technische Universität München Institut für Informatik

Prof. Tobias Nipkow, Ph.D. Lukas Stevens Lambda Calculus Winter Term 2021/22 Solutions to Exercise Sheet 8

Exercise 1 (Type Inference in Haskell)

In this exercise, we will develop a type inference algorithm for the simply typed λ -calculus in Haskell. The general idea of the algorithm is to apply the type inference rules in a backward manner and to record equality constraints between types on the way. These constraints are then solved to obtain the result type.

- a) Take a look at the template provided on the website. We have provided definitions of terms and types in the simply typed λ -calculus, together with syntax sugar for input and printing. Moreover, you can find the type of substitutions and utility functions to work with substitutions, types and terms.
- b) The first component of the algorithm is unification on types. Given a list of equality constraints between types of the form $u_1 \stackrel{?}{=} t_1, \ldots, u_n \stackrel{?}{=} t_n$, we want to produce a suitable substitution ϕ such that $\phi(u_i) = t_i$ for all $1 \le i \le n$ or report that the given constraints do not have a solution. Fill in the remaining cases of the function solve that achieves this functionality.
- c) Now we want to apply the type inference rules and record the arising type constraints. Function *constraints* of type

$$Term \rightarrow Type \rightarrow Env \rightarrow (Int, [(Type, Type)]) \rightarrow Maybe (Int, [(Type, Type)])$$

will achieve this functionality. Given a term t, a type τ , an environment Γ , and a pair (n, C), it will try to justify $\Gamma \vdash t : \tau$, adding the arising type constraints to C. The natural number n is used to keep track of the least variable index that is currently unused. This allows to easily generate fresh variable names. Complete the definition of *constraints*.

d) Define the function *infer* that infers the type of a term by combining *solve* and *constraints* and try it on a few examples.

Solution

See type_inference.hs.

Exercise 2 (Every Type is Applicative)

- a) Show that every type is *substitutive*.
- b) Show that every type is *applicative*.

Solution

a) We first show that every type τ is of the form

$$\tau_1 \to \dots \tau_n \to \tau'$$

with τ' not of function type by induction on τ . The case where τ is elementary is immediate. If $\tau = \tau_1 \to \tau_2$, τ_2 is either not of function type and we are done, or we can apply the induction hypothesis to τ_2 , and we are done. Note that \to associates to the right.

Now, we use this as an induction rule on types to show the original statement. Thus, assume $\tau = \tau_1 \to \dots \tau_n \to \tau'$, and that the τ_i are all substitutive (IH). By Lemma 3.2.3, the τ_i are all applicative, and thus τ is substitutive by Lemma 3.2.4.

b) By Lemma 3.2.3

Exercise 3 (Alternative Proof of Lemma 3.2.3)

- a) Show that for every $s \in T$, $s x \in T$ if x is fresh with respect to s.
- b) Show that every substitutive type is applicative.

Solution

a) By induction on $s \in T$.

Case Var: Then $s = y \ r_1 \ \dots \ r_n$ with $r_1, \dots, r_n \in T$ for some variable y. Since $x \in T$ by rule Var, we get $y \ r_1 \ \dots \ r_n \ x \in T$ by rule Var.

Case λ : We assume that $s = (\lambda y. t)$ and $t \in T$ and x is fresh w.r.t y and t. We want to use the rule β to prove $(\lambda y. t)$ $x \in T$ which means that we need to prove $t[x/y] \in T$. The proof is by another induction on $t \in T$.

Case Var: Then $t = z \ r_1 \dots r_n$ with $r_1, \dots, r_n \in T$. We get the induction hypotheses that $r_1[x/y], \dots, r_n[x/y] \in T$. Additionally, we have $y \in T$ and $x \in T$ by rule Var. Thus, we have that $t[x/y] = z[x/y] \ r_1[x/y] \dots r_n[x/y] \ x[x/y] = z[x/y] \ r_1[x/y] \dots r_n[x/y] \ y \in T$.

Case β : Then $t = (\lambda z. \ r)$ and $r \in T$ with the IH $r[x/y] \in T$. Thus, $t[x/y] = (\lambda z. \ r)[x/y] = (\lambda z. \ r[x/y])$ due the freshness of x. Now we can use the rule λ to conclude that $t[x/y] \in T$.

Case λ : Then $t = (\lambda z. \ r) \ u \ u_1 \ldots u_n$ and $r[u/z] \ u_1 \ldots u_n \in T$ and $u \in T$. As IH we get that $(r[u/z] \ r_1 \ldots r_n)[x/y] \in T$ and $u[x/y] \in T$. From this we have $(r[u/z] \ r_1 \ldots r_n)[x/y] = r[x/y][u[x/y]/z] \ r_1[x/y] \ldots r_n[x/y] \in T$ by Lemma 1.1.5 using the fact that x is fresh w.r.t. both u and y.

Case β : We have s = r[t/x] $t_1 \dots t_n$ $x \in T$ by IH and $t \in T$ as another precondition, and thus can directly apply β .

2

b) Assume that τ is substitutive. Further assume that we have $t: \tau \to \sigma$, $r: \tau$, $t \in T$, and $r \in T$. With the part a) we get that $t \ x \in T$ for fresh $x: \tau$. Because τ is substitutive, we have

$$t r = (t x)[r/x] \in T.$$

Homework 4 (Types of Church Numerals)

a) Let τ be any type. Show that for the n-th Church numeral $\underline{\mathbf{n}}$, we have

$$[] \vdash \underline{\mathbf{n}} \colon (\tau \to \tau) \to \tau \to \tau$$

.

b) Show that every term $t \in NF$ with $[] \vdash t : (\iota \to \iota) \to \iota \to \iota$, t is either id or a church numeral. Here ι is any elementary type.

Homework 5 (Completeness of T)

In this exercise, you will show the converse of Lemma 3.2.2, i.e.

$$\Downarrow t \Longrightarrow t \in T$$

.

- a) Show that every λ -term has one of the following shapes:
 - $x r_1 \dots r_n$
 - $\lambda x. r$
 - $(\lambda x. \ r) s s_1 \ldots s_n$

Note that this gives rise to an alternative inductive definition for λ -terms and to a corresponding rule induction on λ -terms.

b) \downarrow gives rise to a wellfounded induction principle. To show

$$\forall t. \ \ \psi \ t \Longrightarrow P(t) \,,$$

it suffices to prove:

$$\forall t. \ (\forall t'. \ t \rightarrow_{\beta} t' \Longrightarrow P(t')) \Longrightarrow P(t).$$

Use this to prove:

$$\Downarrow t \Longrightarrow t \in T$$

Hint: Use (a) for an inner induction on terms.