
Technische Universität München Lambda Calculus
Institut für Informatik Winter Term 2021/22
Prof. Tobias Nipkow, Ph.D. Solutions to Exercise Sheet 09
Lukas Stevens

Exercise 1 (Recursive let)

Recursive let expressions are one way (besides Y -combinators) to add recursion to λ→.

t ::= x | (t1 t2) | (λx. t) | letrec x = t1 in t2

a) Modify the standard typing rule for let to create a suitable rule for letrec.

b) Considering type inference, what is the problematic property of this rule compared
to the rule for let?

Solution

a) The rule for letrec is like the rule for let, but we also add x to Γ when checking
t1.

Γ[x : σ1] ` t1 : σ1 Γ[x : σ1] ` t2 : σ2

Γ ` (letrec x = t1 in t2) : σ2
LetRec

Alternatively, we can combine this rule with the ∀-intro typing rule:

{α1 . . . αn} = FV (τ) \ FV (Γ)
Γ[x : ∀α1 . . . αn. τ] ` t1 : τ Γ[x : ∀α1 . . . αn. τ] ` t2 : τ2

Γ ` letrec x = t1 in t2 : τ2
LetRec’

b) The interesting property of this new typing rule is that we cannot know which
α1 . . . αn we need to generalize τ over before we have inferred τ (the type of t1).
Thus, typical compilers will only allow x to be used monomorphically in t1. Alter-
natively, the user can explicitly specify a type schema for x, so that it can be used
polymorphically.

Exercise 2 (Type Inference in Haskell (2))

Extend the implementation of the type inference algorithm from the last exercise with let

and letrec constructs.

Solution

See type inference let.hs.

1

Exercise 3 (Peirce’s Law in Intuitionistic Logic)

Prove the following variant of Peirce’s Law in inuitionistic logic:

((((P → Q) → P) → P) → Q) → Q

Solution

Let A3 = (P → Q) → P , A2 = A3 → P , and A1 = A2 → Q.

A1, A3, P ` A1

A1, A3, P ` P
A1, A3, P ` A2

→I

A1, A3, P ` Q
→E

A1, A3 ` P → Q
→I

A1, A3 ` A3

A1, A3 ` P
→E

A1 ` A2

→I
A1 ` A1

A1 ` Q
→E

` ((((P → Q) → P) → P) → Q) → Q
→I

2

Homework 4 (Fixed-point combinator)

Let
$ = λabcdefghijklmnopqstuvwxyzr. r(thisisafixedpointcombinator)

and
e = $$$$$$$$$$$$$$$$$$$$$$$$$$.

Show that e is a fixed-point combinator.

Homework 5 (let-Polymorphism)

Give a derivation tree for the following statement, and so determine the type τ :

[z : τ0] ` let x = λy z. z y y in x (x z) : τ

Homework 6 (Constructive Logic)

a) Prove the following statement using the calculus for intuitionistic propositional logic:

((c→ b) → b) → (c→ a) → ((a→ b) → b)

Hint: To make your proof tree more compact, you may remove unneeded assumptions
to the left of the ` during the proof as you see fit. For example, the following step
is valid:

p ` p
p, q ` p

b) Give a well-typed expression in λ→ with the type

((γ → β) → β) → (γ → α) → ((α→ β) → β)

(You don’t need to give the derivation tree.)

3

