Prof. Tobias Nipkow, Ph.D.
Exercise Sheet 10
Lukas Stevens

Exercise 1 (Example of Type Inference for let)

Consider the typing problem

$$
x: \alpha \vdash \text { let } y=\lambda z . z x \text { in } y(\lambda v, x): ? \tau
$$

where α is a type variable.
a) Find the most general type schema σ with $x: \alpha \vdash \lambda z . z x: \sigma$ and draw a type derivation tree.
b) Draw the type derivation tree for

$$
x: \alpha, y: \sigma \vdash y(\lambda v . x): ? \tau
$$

with the correct type for ? τ.

Exercise 2 (Recursive let)

Recursive let expressions are one way (besides Y-combinators) to add recursion to $\lambda \rightarrow$.

$$
t:=x\left|\left(t_{1} t_{2}\right)\right|(\lambda x . \quad t) \mid \text { letrec } x=t_{1} \text { in } t_{2}
$$

a) Modify the standard typing rule for let to create a suitable rule for letrec.
b) Considering type inference, what is the problematic property of this rule compared to the rule for let?

Exercise 3 (Type Inference in Haskell (2))

Extend the implementation of the type inference algorithm from the last exercise with let and letrec constructs.

Homework 4 (Fixed-point combinator)

Let

$$
\$=\lambda a b c d e f g h i j k l m n o p q s t u v w x y z r . r(t h i s i s a f i x e d p o i n t c o m b i n a t o r)
$$

and

$$
€=\$.
$$

Show that $€$ is a fixed-point combinator.

Homework 5 (let-Polymorphism)

Give a derivation tree for the following statement, and so determine the type τ :

$$
\left[z: \tau_{0}\right] \vdash \text { let } x=\lambda y z . z y y \text { in } x(x z): \tau
$$

Homework 6 (Towards Syntax-Directed let-Polymorphism)

In the lecture, it was claimed that the systems $D M$ and $D M^{\prime}$, which, in contrast to $D M$, has explicit rules \forall Intro and \forall Elim, are essentially equivalent. More specifically, it was claimed that

$$
\Gamma \vdash_{D M} t: \sigma \Longrightarrow \exists \tau . \quad \Gamma \vdash_{D M^{\prime}} t: \tau \wedge \operatorname{gen}(\Gamma, \tau) \preceq \sigma .
$$

As a step towards proving this result, we want to rearrange derivations in $D M$ such that they resemble derivations in $D M^{\prime}$. In particular, prove that
a) Any derivation $\Gamma \vdash_{D M} t: \sigma$ can be transformed such that \forall Elim only occur in a chain below the Var rule, i.e.

$$
\begin{gathered}
\frac{\Gamma \vdash x: \forall \alpha_{1}, \ldots, \alpha_{n} \cdot \tau}{\vdots} \\
\frac{\operatorname{Var}}{\frac{\Gamma \vdash x: \forall \alpha_{n} . \tau}{\Gamma \vdash x: \tau}} \forall \operatorname{Elim} \\
\forall \operatorname{Elim}
\end{gathered}
$$

b) Any derivation $\Gamma \vdash_{D M} t: \sigma$ can be transformed such that \forall Intro only occur in a chain that is terminated by an application of the Let rule or by the end of the proof, i.e.

$$
\begin{aligned}
& \quad \forall \operatorname{Intro} \frac{\frac{\vdots}{\Gamma \vdash t_{1}: \tau}}{\Gamma \vdash t_{1}: \forall \alpha_{n} \cdot \tau} \\
& \quad \forall \operatorname{Intro} \frac{\vdots}{\Gamma \text { Intro } \frac{\vdots}{\Gamma \vdash t_{1}: \forall \alpha_{1}, \ldots, \alpha_{n} \cdot \tau}} \frac{\vdots}{\Gamma \vdash \text { let } x=t_{1} \text { in } t_{2}: \sigma} \\
& \quad \frac{\vdots}{\Gamma\left[x: \forall \alpha_{1}, \ldots, \alpha_{n} . \tau\right] \vdash t_{2}: \sigma} \\
& \text { Let }
\end{aligned}
$$

or

$$
\begin{gathered}
\frac{\frac{\vdots}{\Gamma \vdash t_{1}: \tau}}{\frac{\Gamma \vdash t_{1}: \forall \alpha_{n} \cdot \tau}{\vdots}} \forall \text { Intro } \\
\Gamma \text { Intro } \\
\frac{t_{1}: \forall \alpha_{1}, \ldots, \alpha_{n} . \tau}{} \forall \text { Intro }
\end{gathered}
$$

