Technische Universität München Institut für Informatik Prof. Tobias Nipkow, Ph.D. Lukas Stevens Lambda Calculus Winter Term 2023/24 Exercise Sheet 1

Exercise 1 (λ -Terms)

Rewrite the following terms such that they are completely parenthesized and conform to the grammar for the λ -calculus given in the lecture (without any shortcut notations).

a) $u x (y z) (\lambda v. v y)$ b) $(\lambda x y z. x z (y z)) u v w$

Rewrite the following terms such there are as few parentheses as possible, and apply all shortcut notation from the lecture:

- c) $((u (\lambda x. (v (w x))))x)$
- d) $(((w (\lambda x. (\lambda y. (\lambda z. ((x z) (y z)))))) u) v)$

Evaluate the following substitutions:

e) $(\lambda y. x (\lambda x. x)) [(\lambda y. x y)/x]$

f) $(y (\lambda v. x v)) [(\lambda y. v y)/x]$

Exercise 2 (λ -Terms as Trees)

Rewrite the λ -terms resulting from exercises 1c) and 1d) to their corresponding representation as a tree.

Exercise 3 (Formalisations with λ **-Terms)**

Express the following propositions as $\lambda\text{-terms.}$ Use the constant D as a derivative operator.

- a) The derivative of x^2 is 2x.
- b) The derivative of x^2 at 3 is 6.
- c) Let f be a function, and let g be defined as $g(x) := f(x^2)$. The derivative of g at x is different from the derivative of f at x^2 .
- d) Formulate the proposition c) without using the auxiliary function symbol g.

	 	_														

Homework 4 (Interpreting λ -Terms)

Give a *compact* natural-language description of the computational effect of the following λ -terms.

- a) $\lambda x. x$
- b) $\lambda x y. x$
- c) $\lambda x y z$. x z y
- d) $\lambda x y. x (x y)$
- e) $\lambda x y z. x (y z)$

Homework 5 (Free and Bound Variables)

Mark the free variables in the following examples. Graphically indicate (by drawing arrows) the binding λ for each bound variable.

- a) $\lambda x y z$. $(\lambda x y. z x) y (x z)$
- b) $\lambda x. \lambda y. (\lambda y. z (\lambda z. y x)) (\lambda x z. x y z) y x$

Homework 6 (Substitutions)

Evaluate the following substitutions:

- a) $((\lambda x. f x) (\lambda f. f x)) [g x/f]$
- b) $(\lambda f. \lambda y. f x y) [f y/x]$

Homework 7 (Properties of Substitution)

Evaluate the following substitutions:

a) Give a counterexample for

$$s[t/x][u/y] = s[u/y][t/x].$$

b) Under which conditions does

$$s[t/x][u/y] = s[t[u/y]/x]$$

hold?