Exercise 1 (λ-Terms)

Rewrite the following terms such that they are completely parenthesized and conform to the grammar for the λ-calculus given in the lecture (without any shortcut notations).
a) $u x(y z)(\lambda v \cdot v y)$
b) $(\lambda x y z \cdot x z(y z)) u v w$

Rewrite the following terms such there are as few parentheses as possible, and apply all shortcut notation from the lecture:
c) $((u(\lambda x \cdot(v(w x)))) x)$
d) $(((w(\lambda x \cdot(\lambda y \cdot(\lambda z \cdot((x z)(y z)))))) u) v)$

Evaluate the following substitutions:
e) $(\lambda y \cdot x(\lambda x \cdot x))[(\lambda y \cdot x y) / x]$
f) $(y(\lambda v \cdot x v))[(\lambda y \cdot v y) / x]$

Exercise 2 (λ-Terms as Trees)

Rewrite the λ-terms resulting from exercises 1 c) and 1 d) to their corresponding representation as a tree.

Exercise 3 (Formalisations with λ-Terms)

Express the following propositions as λ-terms. Use the constant D as a derivative operator.
a) The derivative of x^{2} is $2 x$.
b) The derivative of x^{2} at 3 is 6 .
c) Let f be a function, and let g be defined as $g(x):=f\left(x^{2}\right)$. The derivative of g at x is different from the derivative of f at x^{2}.
d) Formulate the proposition c) without using the auxiliary function symbol g.

Homework 4 (Interpreting λ-Terms)

Give a compact natural-language description of the computational effect of the following λ-terms.
a) $\lambda x \cdot x$
b) $\lambda x y \cdot x$
c) $\lambda x y z \cdot x z y$
d) $\lambda x y \cdot x(x y)$
e) $\lambda x y z \cdot x(y z)$

Homework 5 (Free and Bound Variables)

Mark the free variables in the following examples. Graphically indicate (by drawing arrows) the binding λ for each bound variable.
a) $\lambda x y z \cdot(\lambda x y \cdot z x) y(x z)$
b) $\lambda x \cdot \lambda y \cdot(\lambda y \cdot z(\lambda z \cdot y x))(\lambda x z \cdot x y z) y x$

Homework 6 (Substitutions)

Evaluate the following substitutions:
a) $((\lambda x . f x)(\lambda f . f x))[g x / f]$
b) $(\lambda f . \lambda y . f x y)[f y / x]$

Homework 7 (Properties of Substitution)

Evaluate the following substitutions:
a) Give a counterexample for

$$
s[t / x][u / y]=s[u / y][t / x] .
$$

b) Under which conditions does

$$
s[t / x][u / y]=s[t[u / y] / x]
$$

hold?

