Exercise 1 (β-reduction)

A term t is in β-normal form if there is no term t^{\prime} such that $t \rightarrow_{\beta} t^{\prime}$. List all terms t such that:

$$
(\lambda x .(\lambda x y \cdot x) z y)((\lambda x \cdot x x)(\lambda x \cdot x x)((\lambda x y \cdot x) y)) \rightarrow_{\beta}^{*} t
$$

Which are normal forms?

Exercise 2 (Lists in λ-calculus)

Specify λ-terms for nil, cons, hd, tl and null, that encode lists in the λ-calculus. Show that your terms satisfy the following conditions:

$$
\begin{array}{lllll}
\text { null nil } & \rightarrow_{\beta}^{*} \text { true } & \text { hd (cons } x l) & \rightarrow_{\beta}^{*} & x \\
\text { null (cons } x l) & \rightarrow_{\beta}^{*} \text { false } & \mathrm{tl}(\text { cons } x l) & \rightarrow_{\beta}^{*} & l
\end{array}
$$

Hint: Use pairs.

Homework 3 (Substitution Lemma)

Show that, given $x \neq y$ and $x \notin \mathrm{FV}(u)$:

$$
s[t / x][u / y]=s[u / y][t[u / y] / x]
$$

Homework 4 (Trees in λ-calculus)

Encode a datatype of binary trees in lambda calculus. Specify the operations tip and node that construct trees, as well as isTip, left, right, and value. Each tip should carry a value, whereas each node should consist of two subtrees.

Show that the following holds:

$$
\begin{aligned}
\text { isTip }(\operatorname{tip} a) & \rightarrow_{\beta}^{*} \text { true } \\
\text { isTip (node } x y) & \rightarrow_{\beta}^{*} \text { false } \\
\text { value }(\operatorname{tip} a) & \rightarrow_{\beta}^{*} a \\
\text { left }(\text { node } x y) & \rightarrow_{\beta}^{*} x \\
\text { right (node } x y) & \rightarrow_{\beta}^{*} y
\end{aligned}
$$

Homework 5 (Alternative Encoding of Lists)

In this exercise, we consider an alternative encoding of lists. The list $[x, y, z]$, for instance, will now be encoded as: $\lambda c n . c x(c y(c z n)$) (speaking in terms of functional programming, each list now encodes its corresponding fold). As in the tutorial, define the functions nil, cons, hd, and null for this encoding and show that they satisfy the same conditions. You do not need to define t l.

Homework 6 (Multiplication)

Define multiplication as a closed λ-term using add but no other helper functions and demonstrate its correctness on an example.

