Technische Universität München
Institut für Informatik
Prof. Tobias Nipkow, Ph.D.
Lukas Stevens

Exercise Sheet 3

Exercise 1 (Fixed-point Combinator)
a) In the last tutorial, we came up with an encoding for lists together with the functions nil, cons, null, hd, and tl. Use a fixed-point combinator to compute the length of a list in this encoding.
b) In the last homework, we encoded lists with the fold encoding, i.e. a list $[x, y, z]$ is represented as $\lambda c n . c x(c y(c z n))$. Define a length function for lists in this encoding.

Exercise 2 (β-reduction on de Bruijn Preserves Substitution)

We consider an alternative representation of λ-terms that is due to de Bruijn. In this representation, λ-terms are defined according to the following grammar:

$$
d::=i \in \mathbb{N}_{0}\left|d_{1} d_{2}\right| \lambda d
$$

a) Convert the terms $\lambda x y . x$ and $\lambda x y z . x z(y z)$ into terms according to de Bruijn.
b) Convert the term $\lambda((\lambda(1(\lambda 1)))(\lambda(21)))$ into our usual representation.
c) Define substitution and β-reduction on de Bruijn terms.
d) Now restate Lemma 1.2.5 for de Bruijn terms and prove it:

$$
s \rightarrow_{\beta} s^{\prime} \Longrightarrow s[u / x] \rightarrow_{\beta} s^{\prime}[u / x]
$$

Homework 3 (Multiplication)

Define multiplication using fix and prove its correctness. You can assume that you are given a predecessor function pred such that:

- pred $\underline{0} \rightarrow_{\beta}^{*} \underline{0}$
- $\operatorname{pred}(\operatorname{succ} n) \rightarrow_{\beta}^{*} n$

Homework 4 (Efficient Substitution on de Bruijn)

We define a new lifting operator $-\uparrow_{-}^{-}$:

$$
\begin{aligned}
i \uparrow_{l}^{n} & =\left\{\begin{array}{l}
i, \text { if } i<l \\
i+n, \text { if } i \geq l
\end{array}\right. \\
\left(d_{1} d_{2}\right) \uparrow_{l}^{n} & =d_{1} \uparrow_{l}^{n} d_{2} \uparrow_{l}^{n} \\
(\lambda d) \uparrow_{l}^{n} & =\lambda d \uparrow_{l+1}^{n}
\end{aligned}
$$

Use - \uparrow_{-}^{-}to define a more efficient version of substitution for de Bruijn terms that only applies lifting in the case that a variable is actually replaced by a term. Prove that $t[\mathrm{~s} / 0]$ yields the same result for both, your new version and the version from the tutorial. Hint: Find a suitable generalization first.

Homework 5 (Expanding Lets)

We have a language with let-expressions, i.e.:

$$
t::=v|t t| \text { let } v=t \text { in } t
$$

Write a program which expands all let-expressions. The let-semantics are:

$$
\left(\text { let } v=t_{1} \text { in } t_{2}\right)=\left(\lambda v . t_{2}\right) t_{1}
$$

You can find a Haskell template for this exercise here.

