Technische Universität München Institut für Informatik Prof. Tobias Nipkow, Ph.D. Lukas Stevens

Exercise 1 (Intuitionistic Proof Search)

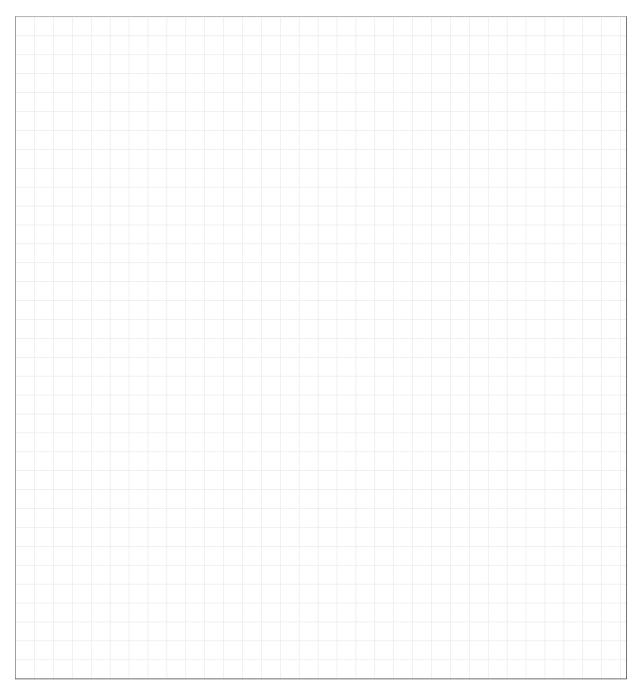
The algorithm in Theorem 4.1.4 can be streamlined as follows:

- a) When trying to prove $\Gamma \vdash A \rightarrow B$, it suffices to try (\rightarrow Intro). Explain why.
- b) The attempt to prove $\Gamma \vdash A$ by assumption can be dropped: it is subsumed by the alternative using Lemma 4.1.2. However, the proof obtained can be different. Explain the difference and why the outright proof by assumption is subsumed.
- c) How would the Haskell code from the last tutorial need to be adapted to account for these improvements?

Exercise 2 (Intuitionistic Proofs)

Prove the following propositions in intuitionistic logic:

- a) $(A \to A) \lor B$
- b) $A \to (B \to A \land B)$
- c) $(A \to C) \to ((B \to C) \to (A \lor B \to C))$



						 				_					
															+
															\rightarrow

Homework 3 (Weak Normalization with Pairs)

We previously proved (Exercise 8.2) that every type-correct λ^{\rightarrow} -term has a β -normal form. Adapt the proof to accomodate for the extension of the simply typed lambda calculus with pairs.

Homework 4 (From Proof Terms to Propositions)

Consider the following proof term:

- $\lambda q. \ \lambda p. \ case \ \pi_1 \ p \ of \ inl \ a \Rightarrow inl \ <\pi_1 \ q, \ <a, \ \pi_2 \ p >> \ | \ inr \ b \Rightarrow inr \ <\pi_2 \ q, \ b >$
- a) Exhibit the proposition that is proved by this term.
- b) Give the corresponding proof tree.

Homework 5 (Intuitionistic Proofs)

Prove the following propositions in pure logic, without lambda-terms, and write down the λ -term corresponding to each proof:

- a) $\neg (A \lor B) \rightarrow \neg A \land \neg B$
- b) $\neg A \land \neg B \to \neg (A \lor B)$