
Logic and Verification
Informatics
Technical University of Munich

Eexam
Place student sticker here

Note:
• During the attendance check a sticker containing a unique code will be put on this

exam.
• This code contains a unique number that associates this exam with your registration

number.
• This number is printed both next to the code and to the signature field in the

attendance check list.

Lambda Calculus

Exam: IN2358 / Endterm Date: Friday 16th February, 2024
Examiner: Prof. Tobias Nipkow Time: 11:00 – 12:30

I

P 1 P 2 P 3 P 4 P 5

Working instructions
• This exam consists of 12 pages with a total of 5 problems.

Please make sure now that you received a complete copy of the exam.

• The total amount of achievable credits in this exam is 40 credits.

• Detaching pages from the exam is prohibited.

• Allowed resources:

– one DIN A4 sheet with hand-written notes on both sides
– one analog dictionary English ↔ native language

• Subproblems marked by * can be solved without results of previous subproblems.

• Answers are only accepted if the solution approach is documented. Give a reason for each
answer unless explicitly stated otherwise in the respective subproblem.

• Do not write with red or green colors nor use pencils.

• Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from to / Early submission at

– Page 1 / 12 –

0

1

2

3

4

0

1

2

3

4

Problem 1 Programming with λ-terms (8 credits)

a)* We want to define optionals, i.e. we want to define λ-terms none, some, mapopt, and fromopt with the
following behavior:

• fromopt d none =β d

• fromopt d (some a) =β a

• mapopt f none =β none

• mapopt f (some a) =β (some (f a))

Complete the set of definitions below such that the above conditions are fulfilled.

• fromopt := (λd o. o d (λx. x))

• none := (λd f. d)

• some :=

• mapopt :=

b)* Using the fixed point combinator fix, define a λ-term these such that it holds that

• these (cons none t) =β these t

• these (cons (some a) t) =β cons a (these t)

• these nil =β nil

Your implementation must not rely on the underlying encoding of lists but you may use the functions nil,
cons, null, head, tail, and append with the usual semantics. Remember that null returns a boolean, i.e.
null nil x y →∗

β x and null (cons h t) x y →∗
β y.

Hint: Define a function that converts a single optional into a list first.

• these :=

– Page 2 / 12 –

Problem 2 Rewriting (8 credits)

Let →1, →2 ⊆ A × A be two relations such that →∗
1 ⊆ →∗

2. Properties C1 and C2 are defined as follows:

C1: ∀a b. a →∗
2 b =⇒ ∃c. a →∗

1 c ∧ b →∗
1 c

C2: ∀a b c. a →2 b →∗
1 c =⇒ ∃d. a →∗

1 d ∧ c →∗
1 d

Note: implicitly all variables are assumed to be elements of A.

Prove that C1 if and only if C2.

The proof must be given in the standard verbal style. However, it may be helpful to draw a diagram, in
particular as a starting point.

0

1

2

3

4

5

6

7

8

– Page 3 / 12 –

0

1

2

0

1

2

3

0

1

2

3

4

Problem 3 Quiz (9 credits)

a)* Is there any λ-term F in System F such that F g →∗
β g (F g)?

b)* Give a proposition P and two simply typed λ-terms s and t such that
• s ̸=αβη t where =αβη is defined as (=α ∪ =β ∪ =η)∗, and

• both s and t prove P in intuitionistic logic.

c)* We consider intuitionistic logic with implication, conjunction, and disjunction in this exercise. Additionally,
we consider ⊥E, i.e. we have the rule

Γ ⊢ t : ⊥ ⊥EΓ ⊢ ε t : A

where ε is some fixed constant. Give a lambda term that proves the proposition (A ∨ B) → ¬A → B where
¬A is an abbreviation for A → ⊥.

– Page 4 / 12 –

Problem 4 Typing (9 credits)

In this exercise, you are tasked to solve different typing problems by drawing a type derivation tree. For each
node in such a tree, annotate it with the typing rule that you used.

a)* Find most general types ?1, ?2 and ?3 that solve the typing problem

x : ?1, y : ?2 ⊢ (x (y x)) : ?3

in simply typed lambda calculus and draw the type derivation tree (with the right ?1, ?2 and ?3).

Use only the introduction and elimination rules for → and ∀, the rule for let, and the assumption rule
Γ ⊢ x : Γ(x) for the following exercises.

b)* Find the most general type schema ?σ such that x : A ⊢ λy. x : ?σ.

0

1

2

3

0

1

2

– Page 5 / 12 –

0

1

2

3

4

c) Now, find the most general type ?τ and complete the following derivation tree by filling in the blanks that
are underlined with dots. Each leaf of the tree must be closed by the assumption rule or part b).

⊢ λx. let y = λy. x in (y x) : = ?τ

. ⊢ let y = λy. x in (y x) :
.

x : A ⊢ λy. x : ?σ

Part b)

. .
.

– Page 6 / 12 –

Problem 5 Intuitionistic Logic (6 credits)

In this exercise, we consider intuitionistic logic ⊢I with negation, conjunction, and disjunction extended with
the exclusive or operator ⊕ to obtain the logic ⊢⊕. We can translate formulae in this logic to intuitionistic
logic with the following function:

A∗ = A for atomic A

(A ⊕ B)∗ = (A∗ ∧ ¬B∗) ∨ (¬A∗ ∧ B∗)
(¬A)∗ = ¬A∗

(A ∨ B)∗ = A∗ ∨ B∗

(A ∧ B)∗ = A∗ ∧ B∗

We use the following rules for ⊕ in ⊢⊕:

Γ ⊢⊕ A Γ ⊢⊕ ¬B
⊕I1Γ ⊢⊕ A ⊕ B

Γ ⊢⊕ A ⊕ B Γ, A ∧ ¬B ⊢⊕ C Γ, ¬A ∧ B ⊢⊕ C
⊕EΓ ⊢⊕ C

a)* Write down the missing introduction rule ⊕I2.

b)* Prove that Γ ⊢⊕ A =⇒ Γ∗ ⊢I A∗ by induction on the derivation of Γ ⊢⊕ A where Γ∗ means that we
apply the function −∗ pointwise. You only need to consider the cases where Γ ⊢⊕ A was proved by ⊕I1or
⊕E.
Explicitly annotate each logical inference rule or induction hypothesis that you use.
Note: You don’t need to use any rules for negation.

0

1

0

1

2

3

4

5

– Page 7 / 12 –

– Page 8 / 12 –

Additional space for solutions–clearly mark the (sub)problem your answers are related to and
strike out invalid solutions.

– Page 9 / 12 –

– Page 10 / 12 –

– Page 11 / 12 –

– Page 12 / 12 –

	p1a1c0: Off
	p1a1c1: Off
	p1a1c2: Off
	p1a1c3: Off
	p1a1c4: Off
	p1a1c5: Off
	p1a1c6: Off
	p1a1c7: Off
	p1a1c8: Off
	p1b1c0: Off
	p1b1c1: Off
	p1b1c2: Off
	p1b1c3: Off
	p1b1c4: Off
	p1b1c5: Off
	p1b1c6: Off
	p1b1c7: Off
	p1b1c8: Off
	2.1.1:
	p2a1c0: Off
	p2a1c1: Off
	p2a1c2: Off
	p2a1c3: Off
	p2a1c4: Off
	p2a1c5: Off
	p2a1c6: Off
	p2a1c7: Off
	p2a1c8: Off
	p2a1c9: Off
	p2a1c10: Off
	p2a1c11: Off
	p2a1c12: Off
	p2a1c13: Off
	p2a1c14: Off
	p2a1c15: Off
	p2a1c16: Off
	p3a1c0: Off
	p3a1c1: Off
	p3a1c2: Off
	p3a1c3: Off
	p3a1c4: Off
	p3b1c0: Off
	p3b1c1: Off
	p3b1c2: Off
	p3b1c3: Off
	p3b1c4: Off
	p3b1c5: Off
	p3b1c6: Off
	p3c1c0: Off
	p3c1c1: Off
	p3c1c2: Off
	p3c1c3: Off
	p3c1c4: Off
	p3c1c5: Off
	p3c1c6: Off
	p3c1c7: Off
	p3c1c8: Off
	3.1.1:
	3.2.1:
	3.3.1:
	4.1.1:
	4.2.1:
	p4a1c0: Off
	p4a1c1: Off
	p4a1c2: Off
	p4a1c3: Off
	p4a1c4: Off
	p4a1c5: Off
	p4a1c6: Off
	p4b1c0: Off
	p4b1c1: Off
	p4b1c2: Off
	p4b1c3: Off
	p4b1c4: Off
	p4c1c0: Off
	p4c1c1: Off
	p4c1c2: Off
	p4c1c3: Off
	p4c1c4: Off
	p4c1c5: Off
	p4c1c6: Off
	p4c1c7: Off
	p4c1c8: Off
	5.1.1:
	5.2.1:
	p5a1c0: Off
	p5a1c1: Off
	p5a1c2: Off
	p5b1c0: Off
	p5b1c1: Off
	p5b1c2: Off
	p5b1c3: Off
	p5b1c4: Off
	p5b1c5: Off
	p5b1c6: Off
	p5b1c7: Off
	p5b1c8: Off
	p5b1c9: Off
	p5b1c10: Off
	5.2.2:
	5.2.3:
	5.2.4:
	5.2.5:
	5.2.6:

