
Technische Universität München Lambda Calculus
Institut für Informatik Winter Term 2023/24
Prof. Tobias Nipkow, Ph.D. Solutions to Exercise Sheet 13
Lukas Stevens

Exercise 1 (Church Numerals in System F)

Encode the natural numbers in System F with Church numerals. Use the construction for
recursive types from the lecture.

Solution

We start from the reursive definition

nat = S nat | Z

where the constructor C1 is S and C2 is Z. We use the construction from the lecture to
deduce the type of nat:

τ1 = nat → nat τ2 = nat
σ1 = γ → γ σ2 = γ

Thus nat = ∀γ. σ1 → σ2 → γ = ∀γ. (γ → γ) → γ → γ. Now, we derive the the terms for
the constructors:

Z = λ γ. λ f1 : γ → γ. λf2 : γ. f2

S = λn : nat. λ γ. λ f1 : γ → γ. λf2 : γ. f1 (n γ f1 f2)

Exercise 2 (Programming in System F)

System F allows us to define functions that go far beyond what was possible in the simply
typed λ-calculus. In particular, we can also define some non-primitively recursive functions
in System F. As a prominent example, consider the Ackermann function:

ack 0 n = n+ 1

ack (m+ 1) 0 = ack m 1

ack (m+ 1) (n+ 1) = ack m (ack (m+ 1) n)

Define the Ackermann function in System F based on the encoding of natural numbers
from the last exercise. Hint : First define a function g such that g f n = fn+1 1

1



Solution

To understand why we need the function g, it is useful to consider ack as a function that
is recursive in its first argument. Using the definition of the primitive recursor from the
lecture, we can define ack in terms of the recursor on Church numerals:

rec (succ n) γ f1 f2 = f1 (rec n γ f1 f2)
rec Z γ f1 f2 = f2

This means that we need functions g, h such that

ack m + 1 = g (ack m),
ack 0 = h.

Finding h is easy as ack 0 n = succ n should hold which implies that h = succ. For finding
g it helps to unfold the definition of ack on ack (m+ 1) n until n = 0:

ack (m+ 1) n = ack m (ack (m+ 1) (n− 1))
= ack m (ack m (ack (m+ 1) (n− 2)))
= . . .
= ack m (ack m (. . . (ack (m+ 1) 0) . . .))
= ack m (ack m (. . . (ack m 1) . . .))

= (ack m)n+1 1
= g (ack m) n

Where the last equation follows from the hint. Now, the only thing left is to define g and
plug g and succ into the primitive recursor of nat which is just the type itself according to
the lecture.

g = λf : nat → nat. λn : nat. f (n nat f 1)

ack = λm : nat. m (nat → nat) g succ

Finally, we check that our definition satisifies the equations of the Ackermann function:

ack 0 n =β succ n

ack m + 1 n =β succ m (nat → nat) g succ n

=β (λn : nat. λγ. λf1 : γ → γ. λf2 : γ. f1 (n γ f1 f2)) m (nat → nat) g succ n

=β g (m (nat → nat) g succ) n

=β g (ack m) n

Exercise 3 (Existential Quantification in System F)

System F can also be defined with additional existential types of the form ∃α. τ . To make
use of these types, we add the following constructs to our term language

• pack τ with t as τ ′,

2



• open t as τ with m in t′,

together with the reduction rule:

open (pack τ with t as ∃α. τ ′) as α with m in t′ → t′[τ/α][t/m]

a) Specify the typing rules for ∃.

b) Show how ∃ can be used to specify an abstract module of sets that supports the
empty set, insertion, and membership testing.

c) Show how to implement this module with lists.

d) How do these concepts relate to the SML (or OCaml) concepts of signatures, struc-
tures, and functors?

Solution

a)
Γ ⊢ t : τ ′[τ/α]

Γ ⊢ pack τ with t as ∃α. τ ′ : ∃α. τ ′

Γ ⊢ t : ∃α. τ ′ Γ,m : τ ′ ⊢ t′ : τ ′′ α not free in Γ, τ ′′

Γ ⊢ open t as α with m in t′ : τ ′′

b)
setsig = ∃ set. <set, nat → set → set, nat → set → bool>

c)

packed = pack list nat with as <nil, cons nat, . . . >setsig

open packed as set with m in (λ empty insertmem. mem 1 (insert 0 empty))
(fst m) (snd m) (third m)

d) • Signatures: existential types

• Structures: values of existential type

• Functors: functions with arguments of existential type

3



Homework 4 (Finger Exercises on Typing in System F)

a) Give a type τ such that

⊢ λm : nat. λn : nat. λ α. (n (α → α)) (m α) : τ

is typeable in System F and prove the typing judgement. Recall that

nat = ∀α. (α → α) → α → α .

b) Is there any typeable term t (in System F) such that if we remove all type annotations
and type abstractions from t we get (λx. x x) (λx. x x)?

Homework 5 (Programming in System F)

Define (in System F) a function zero of type nat → bool that checks whether a given
Church numeral is zero. Use the encoding that was introduced in the tutorial.

Homework 6 (Disjunction in System F)

Prove ∨I1 and ∨E from

A ∨B = ∀C. (A → C) → (B → C) → C

in System F. Use pure logic without lambda-terms.

Homework 7 (Progress and Preservation)

We have proved the properties of progress (see Exercise 7.1) and preservation (see Home-
work 7.4) for the simply typed λ-calculus. Extend our previous proofs to show that these
properties also hold for System F.

4


