Propositional Logic Basics

Syntax of propositional logic

Definition

An atomic formula (or atom) has the form A_{i} where $i=1,2,3, \ldots$. Formulas are defined inductively:

- \perp ("False") and T ("True") are formulas
- All atomic formulas are formulas
- For all formulas $F, \neg F$ is a formula.
- For all formulas F und $G,(F \circ G)$ is a formula, where $\circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$
\neg is called negation
\wedge is called conjunction
\checkmark is called disjunction
\rightarrow is called implication
$\leftrightarrow \quad$ is called bi-implication

Parentheses

Precedence of logical operators in decreasing order:

$$
\neg \wedge \vee \rightarrow \leftrightarrow
$$

Operators with higher precedence bind more strongly.
Example
Instead of $(A \rightarrow((B \wedge \neg(C \vee D)) \vee E))$
we can write $A \rightarrow B \wedge \neg(C \vee D) \vee E$.
Outermost parentheses can be dropped.

Syntax tree of a formula

Every formula can be represented by a syntax tree.
Example
$F=\neg\left(\left(\neg A_{4} \vee A_{1}\right) \wedge A_{3}\right)$

Subformulas

The subformulas of a formula are the formulas corresponding to the subtrees of its syntax tree.

$$
\left(\neg A_{4} \vee A_{1}\right)
$$

$\left(\left(\neg A_{4} \vee A_{1}\right) \wedge A_{3}\right)$

$$
\neg\left(\left(\neg A_{4} \vee A_{1}\right) \wedge A_{3}\right)
$$

Induction on formulas

Proof by induction on the structure of a formula:
In order to prove some property $\mathcal{P}(F)$ for all formulas F
it suffices to prove the following:

- Base cases: prove $\mathcal{P}(\perp)$, prove $\mathcal{P}(\top)$, and prove $\mathcal{P}\left(A_{i}\right)$ for all atoms A_{i}
- Induction step for \neg : prove $\mathcal{P}(\neg F)$ under the induction hypothesis $\mathcal{P}(F)$
- Induction step for all $\circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$: prove $\mathcal{P}(F \circ G)$ under the induction hypotheses $\mathcal{P}(F)$ and $\mathcal{P}(G)$

Operators that are merely abbreviations need not be considered!

Semantics of propositional logic (I)

The elements of the set $\{0,1\}$ are called truth values. (You may call 0 "false" and 1 "true")

An assignment is a function $\mathcal{A}:$ Atoms $\rightarrow\{0,1\}$ where Atoms is the set of all atoms.
We extend \mathcal{A} to a function $\hat{\mathcal{A}}$: Formulas $\rightarrow\{0,1\}$

Semantics of propositional logic (II)

$$
\begin{aligned}
\hat{\mathcal{A}}\left(A_{i}\right) & =\mathcal{A}\left(A_{i}\right) \\
\hat{\mathcal{A}}(\neg F) & = \begin{cases}1 & \text { if } \hat{\mathcal{A}}(F)=0 \\
0 & \text { otherwise }\end{cases} \\
\hat{\mathcal{A}}(F \wedge G) & = \begin{cases}1 & \text { if } \hat{\mathcal{A}}(F)=1 \text { and } \hat{\mathcal{A}}(G)=1 \\
0 & \text { otherwise }\end{cases} \\
\hat{\mathcal{A}}(F \vee G) & = \begin{cases}1 & \text { if } \hat{\mathcal{A}}(F)=1 \text { or } \hat{\mathcal{A}}(G)=1 \\
0 & \text { otherwise }\end{cases} \\
\hat{\mathcal{A}}(F \rightarrow G) & = \begin{cases}1 & \text { if } \hat{\mathcal{A}}(F)=0 \text { or } \hat{\mathcal{A}}(G)=1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Instead of $\hat{\mathcal{A}}$ we simply write \mathcal{A}

Truth tables (I)

We can compute $\hat{\mathcal{A}}$ with the help of truth tables.

\neg	A	A	\vee	B		A	\wedge	B		A	\rightarrow	B
1	0		0	0	0		0	0	0		0	1
0	1	0	1	1		0	0	1		0	1	1
0	1		1	1	0		1	0	0		1	0
		1	1	0								
		1	1			1	1	1		1	1	1

Using arithmetic:

$$
\begin{aligned}
& \mathcal{A}(F \wedge G)=\min (\mathcal{A}(F), \mathcal{A}(G)) \\
& \mathcal{A}(F \vee G)=\max (\mathcal{A}(F), \mathcal{A}(G))
\end{aligned}
$$

Abbreviations

A, B, C,
P, Q, R, or \ldots instead of $A_{1}, A_{2}, A_{3} \ldots$

$$
\begin{array}{cll}
F_{1} \leftrightarrow F_{2} & \text { abbreviates } & \left(F_{1} \wedge F_{2}\right) \vee\left(\neg F_{1} \wedge \neg F_{2}\right) \\
\bigvee_{i=1}^{n} F_{i} & \text { abbreviates } & \left(\ldots\left(\left(F_{1} \vee F_{2}\right) \vee F_{3}\right) \vee \ldots \vee F_{n}\right) \\
& \bigwedge_{i=1}^{n} F_{i} & \text { abbreviates }
\end{array} \quad\left(\ldots\left(\left(F_{1} \wedge F_{2}\right) \wedge F_{3}\right) \wedge \ldots \wedge F_{n}\right) .
$$

Special cases:

$$
\bigvee_{i=1}^{0} F_{i}=\bigvee \emptyset=\perp \quad \bigwedge_{i=1}^{0} F_{i}=\bigwedge \emptyset=\top
$$

Truth tables (II)

	\leftrightarrow	B
0	1	0
0	0	1
1	0	0
1	1	1

Coincidence Lemma

Lemma
Let \mathcal{A}_{1} and \mathcal{A}_{2} be two assignments.
If $\mathcal{A}_{1}\left(A_{i}\right)=\mathcal{A}_{2}\left(A_{i}\right)$ for all atoms A_{i} in some formula F, then $\mathcal{A}_{1}(F)=\mathcal{A}_{2}(F)$.

Proof.
Exercise.

Models

If $\mathcal{A}(F)=1 \quad$ then we write $\quad \mathcal{A} \models F$ and say $\quad F$ is true under \mathcal{A}
or
\mathcal{A} is a model of F

If $\mathcal{A}(F)=0$ then we write $\mathcal{A} \not \vDash F$
and say $\quad F$ is false under \mathcal{A}
or

Validity and satisfiability

Definition (Validity)
A formula F is valid (or a tautology)
if every assignment is a model of F.
We write $\models F$ if F is valid, and $\not \models F$ otherwise.

Definition (Satisfiability)

A formula F is satisfiable if it has at least one model; otherwise F is unsatisfiable.
A (finite or infinite!) set of formulas S is satisfiable if there is an assigment that is a model of every formula in S.

Exercise

	Valid	Satisfiable	Unsatisfiable
A			
$A \vee B$			
$A \vee \neg A$			
$A \wedge \neg A$			
$A \rightarrow \neg A$			
$A \rightarrow(B \rightarrow A)$			
$A \rightarrow(A \rightarrow B)$			
$A \leftrightarrow \neg A$			

Exercise

Which of the following statements are true?

		Y	C.ex.
If F is valid,	then F is satisfiable		
If F is satisfiable, \quad then $\neg F$ is satisfiable			
If F is valid,	then $\neg F$ is unsatisfiable		
If F is unsatisfiable,	then $\neg F$ is unsatisfiable		

Mirroring principle

all propositional formulas
$\left.\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { valid } \\ \text { formulas }\end{array} & \begin{array}{c}\text { satisfiable } \\ \text { but nqt valid } \\ \text { formulas }\end{array} & \begin{array}{c}\text { unsatisfiable } \\ \text { formulas }\end{array} \\ & \text { I } & \\ & F \begin{array}{l}1 \\ 1 \\ \\ \end{array} & \neg F\end{array}\right]$

Consequence

Definition

A formula G is a (semantic) consequence of a set of formulas M if every model \mathcal{A} of all $F \in M$ is also a model of G. Then we write $M \vDash G$.
In a nutshell:
"Every model of M is a model of G."

Example
$A \vee B, A \rightarrow B, B \wedge R \rightarrow \neg A, R \models(R \wedge \neg A) \wedge B$

Consequence

Example

$$
\underbrace{A \vee B, A \rightarrow B, B \wedge R \rightarrow \neg A, R}_{M} \models(R \wedge \neg A) \wedge B
$$

Proof:
Assume $\mathcal{A} \models F$ for all $F \in M$.
We need to prove $\mathcal{A} \vDash(R \wedge \neg A) \wedge B$.
From $\mathcal{A} \models A \vee B$ and $\mathcal{A} \models A \rightarrow B$ follows $\mathcal{A} \models B$:
Proof by cases:
If $\mathcal{A}(A)=0$ then $\mathcal{A}(B)=1$ because $\mathcal{A} \models A \vee B$
If $\mathcal{A}(A)=1$ then $\mathcal{A}(B)=1$ because $\mathcal{A} \models A \rightarrow B$
From $\mathcal{A} \models B$ and $\mathcal{A} \models R$ follows $\mathcal{A} \models \neg A$ because \ldots
From $\mathcal{A} \models B, \mathcal{A} \models R$, and $\mathcal{A} \models \neg A$ follows $\mathcal{A} \models(R \wedge \neg A) \wedge B$

Exercise

M	F	$M \models F ?$
A	$A \vee B$	
A	$A \wedge B$	
A, B	$A \vee B$	
A, B	$A \wedge B$	
$A \wedge B$	A	
$A \vee B$	A	
$A, A \rightarrow B$	B	

Consequence

Exercise

The following statements are equivalent:

1. $F_{1}, \ldots, F_{k} \mid=G$
2. $\models\left(\bigwedge_{i=1}^{k} F_{i}\right) \rightarrow G$

Proof of "if $F_{1}, \ldots, F_{k} \models G$ then $\vDash \underbrace{\left(\bigwedge_{i=1}^{k} F_{i}\right) \rightarrow G}_{H}$ ".
Assume $F_{1}, \ldots, F_{k} \models G$.
We need to prove $\models H$, i.e. $\mathcal{A}(H)=1$ for all \mathcal{A}.
We pick an arbitrary \mathcal{A} and show $\mathcal{A}(H)=1$.
Proof by cases.
If $\mathcal{A}\left(\bigwedge F_{i}\right)=0$ then $\mathcal{A}(H)=1$ because $H=\bigwedge F_{i} \rightarrow G$
If $\mathcal{A}\left(\bigwedge F_{i}\right)=1$ then $\mathcal{A}\left(F_{i}\right)=1$ for all i.
Therefore \mathcal{A} is a model of F_{1}, \ldots, F_{k}.
Therefore $\mathcal{A} \models G$ because $F_{1}, \ldots, F_{k} \models G$.
Therefore $A(H)=1$

Validity and satisfiability

Exercise

The following statements are equivalent:

1. $F \rightarrow G$ is valid.
2. $F \wedge \neg G$ is unsatisfiable.

Exercise

Let M be a set of formulas, and let F and G be formulas. Which of the following statements hold?

	Y / N	C.ex.
If F satisfiable then $M \models F$.		
If F valid then $M \models F$.		
If $F \in M$ then $M \models F$.		
If $F \models G$ then $\neg F \models \neg G$.		

Notation

Warning: The symbol \vDash is overloaded:

$$
\begin{aligned}
\mathcal{A} & \models F \\
& \models F \\
M & \models F
\end{aligned}
$$

Convenient variations for set of formulas S :
$\mathcal{A} \models S$ means that for all $F \in S, \mathcal{A} \models F$
$\vDash S$ means that for all $F \in S, \quad \models F$
$M \models S$ means that for all $F \in S, M \models F$

