Propositional Logic Basics

Syntax of propositional logic

Definition

An atomic formula (or atom) has the form A_i where i = 1, 2, 3, ...Formulas are defined inductively:

- \perp ("False") and \top ("True") are formulas
- All atomic formulas are formulas
- For all formulas F, $\neg F$ is a formula.
- For all formulas F und G, (F ∘ G) is a formula, where ∘ ∈ {∧, ∨, →, ↔}
 - ¬ is called negation
 - \land is called conjunction
 - \lor is called disjunction
 - \rightarrow is called implication
 - $\leftrightarrow \quad \text{is called} \quad \text{bi-implication}$

Parentheses

Precedence of logical operators in decreasing order:

$$\neg \land \lor \to \leftrightarrow$$

Operators with higher precedence bind more strongly.

Example

Instead of $(A \rightarrow ((B \land \neg (C \lor D)) \lor E))$ we can write $A \rightarrow B \land \neg (C \lor D) \lor E$.

Outermost parentheses can be dropped.

Syntax tree of a formula

Every formula can be represented by a syntax tree.

Example

$$F = \neg((\neg A_4 \lor A_1) \land A_3)$$

Subformulas

The subformulas of a formula are the formulas corresponding to the subtrees of its syntax tree.

Induction on formulas

Proof by induction on the structure of a formula:

In order to prove some property $\mathcal{P}(F)$ for all formulas F it suffices to prove the following:

Base cases:

prove $\mathcal{P}(\perp)$, prove $\mathcal{P}(\top)$, and prove $\mathcal{P}(A_i)$ for all atoms A_i

- ► Induction step for ¬: prove P(¬F) under the induction hypothesis P(F)
- Induction step for all ∘ ∈ {∧, ∨, →, ↔}: prove P(F ∘ G) under the induction hypotheses P(F) and P(G)

Operators that are merely abbreviations need not be considered!

Semantics of propositional logic (I)

- The elements of the set $\{0,1\}$ are called truth values. (You may call 0 "false" and 1 "true")
- An assignment is a function $\mathcal{A} : Atoms \rightarrow \{0, 1\}$ where Atoms is the set of all atoms.

We extend \mathcal{A} to a function $\hat{\mathcal{A}}$: *Formulas* $\rightarrow \{0, 1\}$

Semantics of propositional logic (II)

$$\begin{aligned} \hat{\mathcal{A}}(A_i) &= \mathcal{A}(A_i) \\ \hat{\mathcal{A}}(\neg F) &= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 0 \\ 0 & \text{otherwise} \end{cases} \\ \hat{\mathcal{A}}(F \land G) &= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 1 \text{ and } \hat{\mathcal{A}}(G) = 1 \\ 0 & \text{otherwise} \end{cases} \\ \hat{\mathcal{A}}(F \lor G) &= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 1 \text{ or } \hat{\mathcal{A}}(G) = 1 \\ 0 & \text{otherwise} \end{cases} \\ \hat{\mathcal{A}}(F \to G) &= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 0 \text{ or } \hat{\mathcal{A}}(G) = 1 \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

Instead of $\hat{\mathcal{A}}$ we simply write \mathcal{A}

Truth tables (I)

We can compute $\hat{\mathcal{A}}$ with the help of truth tables.

Using arithmetic:

 $\mathcal{A}(F \land G) = min(\mathcal{A}(F), \mathcal{A}(G))$ $\mathcal{A}(F \lor G) = max(\mathcal{A}(F), \mathcal{A}(G))$

Abbreviations

 $\begin{array}{lll} A, B, C, \\ P, Q, R, \, \mathrm{or} \, \dots & \text{instead of} & A_1, A_2, A_3 \dots \end{array}$ $\begin{array}{lll} F_1 \leftrightarrow F_2 & \text{abbreviates} & (F_1 \wedge F_2) \vee (\neg F_1 \wedge \neg F_2) \\ & \bigvee_{i=1}^n F_i & \text{abbreviates} & (\dots ((F_1 \vee F_2) \vee F_3) \vee \dots \vee F_n) \\ & & \bigwedge_{i=1}^n F_i & \text{abbreviates} & (\dots ((F_1 \wedge F_2) \wedge F_3) \wedge \dots \wedge F_n) \end{array}$

Special cases:

$$\bigvee_{i=1}^{0} F_{i} = \bigvee \emptyset = \bot \qquad \bigwedge_{i=1}^{0} F_{i} = \bigwedge \emptyset = \top$$

Truth tables (II)

Α	\leftrightarrow	B
0	1	0
0	0	1
1	0	0
1	1	1

Coincidence Lemma

Lemma Let A_1 and A_2 be two assignments. If $A_1(A_i) = A_2(A_i)$ for all atoms A_i in some formula F, then $A_1(F) = A_2(F)$. Proof.

Exercise.

Models

If
$$\mathcal{A}(F) = 1$$
 then we write $\mathcal{A} \models F$
and say F is true under \mathcal{A}
or \mathcal{A} is a model of F

If $\mathcal{A}(F) = 0$ then we write $\mathcal{A} \not\models F$ and say F is false under \mathcal{A} or \mathcal{A} is not a model of F

Validity and satisfiability

Definition (Validity)

A formula F is valid (or a tautology) if *every* assignment is a model of F. We write $\models F$ if F is valid, and $\not\models F$ otherwise.

Definition (Satisfiability)

A formula F is satisfiable if it has at least one model; otherwise F is unsatisfiable.

A (finite or infinite!) set of formulas S is satisfiable if there is an assignment that is a model of every formula in S.

Exercise

	Valid	Satisfiable	Unsatisfiable
A			
$A \lor B$			
$A \lor \neg A$			
$A \wedge \neg A$			
$A \rightarrow \neg A$			
$A \rightarrow (B \rightarrow A)$			
$A \rightarrow (A \rightarrow B)$			
$A \leftrightarrow \neg A$			

Exercise

Which of the following statements are true?

		Y	C.ex.
If F is valid,	then F is satisfiable		
If F is satisfiable,	then $\neg F$ is satisfiable		
If F is valid,	then $\neg F$ is unsatisfiable		
If F is unsatisfiable,	then $\neg F$ is unsatisfiable		

Mirroring principle

all propositional formulas

Consequence

Definition

A formula G is a (semantic) consequence of a set of formulas M if every model \mathcal{A} of all $F \in M$ is also a model of G. Then we write $M \models G$.

In a nutshell:

"Every model of M is a model of G."

Example

 $A \lor B, \ A \to B, \ B \land R \to \neg A, \ R \models (R \land \neg A) \land B$

Consequence

Example

$$\underbrace{A \lor B, \ A \to B, \ B \land R \to \neg A, \ R}_{M} \models (R \land \neg A) \land B$$

Proof:

Assume $\mathcal{A} \models F$ for all $F \in M$. We need to prove $\mathcal{A} \models (R \land \neg A) \land B$. From $\mathcal{A} \models A \lor B$ and $\mathcal{A} \models A \to B$ follows $\mathcal{A} \models B$: Proof by cases: If $\mathcal{A}(A) = 0$ then $\mathcal{A}(B) = 1$ because $\mathcal{A} \models A \lor B$ If $\mathcal{A}(A) = 1$ then $\mathcal{A}(B) = 1$ because $\mathcal{A} \models A \to B$ From $\mathcal{A} \models B$ and $\mathcal{A} \models R$ follows $\mathcal{A} \models \neg A$ because ... From $\mathcal{A} \models B$, $\mathcal{A} \models R$, and $\mathcal{A} \models \neg A$ follows $\mathcal{A} \models (R \land \neg A) \land B$

Exercise

М	F	$M \models F$?
A	$A \lor B$	
A	$A \wedge B$	
A, B	$A \lor B$	
A, B	$A \wedge B$	
$A \wedge B$	A	
$A \lor B$	A	
$A, A \rightarrow B$	В	

Consequence

Exercise

The following statements are equivalent:

1.
$$F_1, \ldots, F_k \models G$$

2. $\models (\bigwedge_{i=1}^k F_i) \rightarrow G$

Proof of "if $F_1, \ldots, F_k \models G$ then $\models \underbrace{(\bigwedge_{i=1}^k F_i) \to G}_{H}$ ".

Assume $F_1, \ldots, F_k \models G$. We need to prove $\models H$, i.e. $\mathcal{A}(H) = 1$ for all \mathcal{A} . We pick an arbitrary \mathcal{A} and show $\mathcal{A}(H) = 1$. Proof by cases. If $\mathcal{A}(\bigwedge F_i) = 0$ then $\mathcal{A}(H) = 1$ because $H = \bigwedge F_i \to G$ If $\mathcal{A}(\bigwedge F_i) = 1$ then $\mathcal{A}(F_i) = 1$ for all *i*. Therefore \mathcal{A} is a model of F_1, \ldots, F_k . Therefore $\mathcal{A} \models G$ because $F_1, \ldots, F_k \models G$. Therefore $\mathcal{A}(H) = 1$

Validity and satisfiability

Exercise

The following statements are equivalent:

- 1. $F \rightarrow G$ is valid.
- 2. $F \land \neg G$ is unsatisfiable.

Exercise

Let M be a set of formulas, and let F and G be formulas. Which of the following statements hold?

	Y/N	C.ex.
If <i>F</i> satisfiable then $M \models F$.		
If F valid then $M \models F$.		
If $F \in M$ then $M \models F$.		
If $F \models G$ then $\neg F \models \neg G$.		

Notation

Warning: The symbol \models is overloaded: $\mathcal{A} \models F$ $\models F$ $\mathcal{M} \models F$

Convenient variations for set of formulas S:

$$\mathcal{A} \models S$$
 means that for all $F \in S$, $\mathcal{A} \models F$
 $\models S$ means that for all $F \in S$, $\models F$
 $\mathcal{M} \models S$ means that for all $F \in S$, $\mathcal{M} \models F$