Propositional Logic Compactness

Compactness Theorem

Theorem A set S of formulas is satisfiable iff every finite subset of S is satisfiable.

Equivalent formulation: A set S of formulas is unsatisfiable iff some finite subset of S is unsatisfiable.

An application: Graph Coloring

Definition A 4-coloring of a graph (V, E) is a map $c : V \to \{1, 2, 3, 4\}$ such that $(x, y) \in E$ implies $c(x) \neq c(y)$.

Theorem

An finite planar graph has a 4-coloring.

Theorem (4CT)

An planar graph G = (V, E) with countably many vertices $V = \{v_1, v_2, \ldots\}$ has a 4-coloring.

Proof $G \rightsquigarrow$ set of formulas S s.t. S is sat. iff G is 4-col.

G is planar

- \Rightarrow every finite subgraph of G is planar and 4-col. (by 4CT)
- \Rightarrow every finite subset of S is sat.
- \Rightarrow S is sat. (by Compactness)
- \Rightarrow *G* is 4-col.

Proof details

 $G \rightsquigarrow S$:

For simplicity:

atoms are of the form A_i^c where $c \in \{1, \dots, 4\}$ and $i \in \mathbb{N}$

$$S := \{A_i^1 \lor A_i^2 \lor A_i^3 \lor A_i^4 \mid i \in \mathbb{N}\} \cup \\ \{A_i^c \to \neg A_i^d \mid i \in \mathbb{N}, \ c, d \in \{1, \dots, 4\}, \ c \neq d\} \cup \\ \{\neg (A_i^c \land A_j^c) \mid (v_i, v_j) \in E, \ c \in \{1, \dots, 4\}\} \}$$

Subgraph corresponding to some $T \subseteq S$: $V_T := \{v_i \mid A_i^c \text{ occurs in } T \text{ (for some } c)\}$ $E_T := \{(v_i, v_j) \mid \neg (A_i^c \land A_j^c) \in T \text{ (for some } c)\}$

Proof of Compactness

Theorem A set S of formulas is satisfiable iff every finite subset of S is satisfiable.

Proof

 \Rightarrow : If S is satisfiable then every finite subset of S is satisfiable. Trivial.

 $\Leftarrow: \text{ If every finite subset of } S \text{ is satisfiable then } S \text{ is satisfiable.}$ We prove that S has a model.

Proof of Compactness

Terminology: \mathcal{A} is a b_1, \ldots, b_n model of T(where $b_1, \ldots, b_n \in \{0, 1\}^*$ and T is a set of formulas) if $\mathcal{A}(\mathcal{A}_i) = b_i$ (for $i = 1, \ldots, n$) and $\mathcal{A} \models T$.

Define an infinite sequence b_1, b_2, \ldots recursively as follows:

$$b_{n+1}$$
 = some $b \in \{0, 1\}$ s.t.
all finite $T \subseteq S$ have a b_1, \ldots, b_n, b model.

Claim 1: For all *n*, all finite $T \subseteq S$ have a b_1, \ldots, b_n model. **Proof** by induction on *n*.

Case n = 0: because all finite $T \subseteq S$ are satisfiable.

Case n + 1: We need to show that a suitable b exists. Proof by contradiction. Assume there is no suitable b. Then there is a finite $T_0 \subseteq S$ that has no $b_1, \ldots, b_n, 0$ model (0) and there is a finite $T_1 \subseteq S$ that has no $b_1, \ldots, b_n, 1$ model (1). Therefore $T_0 \cup T_1$ has no b_1, \ldots, b_n model A: $A(A_{n+1}) = 0$ contradicts (0), $A(A_{n+1}) = 1$ contradicts (1). But by IH: $T_0 \cup T_1$ has a b_1, \ldots, b_n model — Contradiction!

Proof of Compactness

Define $\mathcal{B}(A_i) = b_i$ for all *i*. **Claim 2:** $\mathcal{B} \models S$ We show $\mathcal{B} \models F$ for all $F \in S$. Let *m* be the maximal index of all atoms in *F*. By Claim 1, $\{F\}$ has a b_1, \ldots, b_m model \mathcal{A} . Hence $\mathcal{B} \models F$ because \mathcal{A} and \mathcal{B} agree on all atoms in *F*.

Corollary

Corollary If $S \models F$ then there is a finite subset $M \subseteq S$ such that $M \models F$.