First-Order Predicate Logic Basics

Syntax of predicate logic: terms

A variable is a symbol of the form x_i where $i = 1, 2, 3 \dots$

A function symbol is of the form f_i^k where i = 1, 2, 3... and k = 0, 1, 2...

A predicate symbol is of the form P_i^k where i = 1, 2, 3... and k = 0, 1, 2...

We call i the index and k the arity of the symbol.

Terms are inductively defined as follows:

- 1. Variables are terms.
- 2. If f is a function symbol of arity k and t_1, \ldots, t_k are terms then $f(t_1, \ldots, t_k)$ is a term.

Function symbols of arity 0 are called constant symbols. Instead of f_i^0 () we write f_i^0 .

Syntax of predicate logic: formulas

If P is a predicate symbol of arity k and t_1, \ldots, t_k are terms then $P(t_1, \ldots, t_k)$ is an atomic formula. If k = 0 we write P instead of P().

Formulas (of predicate logic) are inductively defined as follows:

- Every atomic formula is a formula.
- ▶ If F is a formula, then $\neg F$ is also a formula.
- ▶ If F and G are formulas, then $F \wedge G$, $F \vee G$ and $F \rightarrow G$ are also formulas.
- If x is a variable and F is a formula, then ∀x F and ∃x F are also formulas. The symbols ∀ and ∃ are called the universal and the existential quantifier.

Syntax trees and subformulas

Syntax trees are defined as before, extended with the following trees for $\forall xF$ and $\exists xF$:

Subformulas again correspond to subtrees.

4

Sructural induction of formulas

Like for propositional logic but

- ▶ Different base case: $\mathcal{P}(P(t_1, ..., t_k))$
- ► Two new induction steps: prove $\mathcal{P}(\forall x \ F)$ under the induction hypothesis $\mathcal{P}(F)$ prove $\mathcal{P}(\exists x \ F)$ under the induction hypothesis $\mathcal{P}(F)$

Naming conventions

```
x,\ y,\ z,\ \dots instead of x_1,\ x_2,\ x_3,\ \dots a, b, c, ... for constant symbols f,\ g,\ h,\ \dots for function symbols of arity >0 P,\ Q,\ R,\ \dots instead of P_i^k
```

Precedence of quantifiers

Quantifiers have the same precedence as \neg

Example

$$\forall x \ P(x) \land Q(x) \quad \text{abbreviates} \quad (\forall x \ P(x)) \land Q(x) \\ \quad \text{not} \quad \forall x \ (P(x) \land Q(x)) \\ \text{Similarly for } \lor \text{ etc.}$$

[This convention is not universal]

Free and bound variables, closed formulas

A variable x occurs in a formula F if it occurs in some atomic subformula of F.

An occurrence of a variable in a formula is either free or bound.

An occurrence of x in F is bound if it occurs in some subformula of F of the form $\exists xG$ or $\forall xG$; the smallest such subformula is the scope of the occurrence. Otherwise the occurrence is free.

A formula without any free occurrence of any variable is closed.

Example

$$\forall x \ P(x) \rightarrow \exists y \ Q(a, x, y)$$

	Closed?
$\forall x \ P(a)$	
$\forall x \exists y \ (Q(x,y) \lor R(x,y))$	Υ
$\forall x \ Q(x,x) \to \exists x \ Q(x,y)$	N
$\forall x \ P(x) \lor \forall x \ Q(x,x)$	Υ
$\forall x \ (P(y) \land \forall y \ P(x))$	N
$P(x) \rightarrow \exists x \ Q(x, f(x))$	N

	Formula?
$\exists x \ P(f(x))$	
$\exists f \ P(f(x))$	

9

Semantics of predicate logic: structures

A structure is a pair $\mathcal{A} = (U_{\mathcal{A}}, I_{\mathcal{A}})$ where $U_{\mathcal{A}}$ is an arbitrary, nonempty set called the universe of \mathcal{A} , and the interpretation $I_{\mathcal{A}}$ is a partial function that maps

- ightharpoonup variables to elements of the universe $U_{\mathcal{A}}$,
- ▶ function symbols of arity k to functions of type $U_{\mathcal{A}}^k \to U_{\mathcal{A}}$,
- ▶ predicate symbols of arity k to functions of type $U_{\mathcal{A}}^k \to \{0,1\}$ (predicates) [or equivalently to subsets of $U_{\mathcal{A}}^k$ (relations)]

 I_A maps syntax (variables, functions and predicate symbols) to their meaning (elements, functions and predicates)

The special case of arity 0 can be written more simply:

- ightharpoonup constant symbols are mapped to elements of $U_{\mathcal{A}}$,
- ▶ predicate symbols of arity 0 are mapped to $\{0,1\}$.

Abbreviations:

$$x^{\mathcal{A}}$$
 abbreviates $I_{\mathcal{A}}(x)$
 $f^{\mathcal{A}}$ abbreviates $I_{\mathcal{A}}(f)$
 $P^{\mathcal{A}}$ abbreviates $I_{\mathcal{A}}(P)$

Example

$$U_{\mathcal{A}} = \mathbb{N}$$
 $I_{\mathcal{A}}(P) = P^{\mathcal{A}} = \{(m,n) \mid m,n \in \mathbb{N} \text{ and } m < n\}$ $I_{\mathcal{A}}(Q) = Q^{\mathcal{A}} = \{m \mid m \in \mathbb{N} \text{ and } m \text{ is prime}\}$ $I_{\mathcal{A}}(f)$ is the successor function: $f^{\mathcal{A}}(n) = n + 1$ $I_{\mathcal{A}}(g)$ is the addition function: $g^{\mathcal{A}}(m,n) = m + n$ $I_{\mathcal{A}}(a) = a^{\mathcal{A}} = 2$ $I_{\mathcal{A}}(z) = z^{\mathcal{A}} = 3$ Intuition: is $\forall x \ P(x,f(x)) \land Q(g(a,z))$ true in this structure?

11

Evaluation of a term in a structure

Definition

Let t be a term and let $\mathcal{A}=(U_{\mathcal{A}},I_{\mathcal{A}})$ be a structure. \mathcal{A} is suitable for t if $I_{\mathcal{A}}$ is defined for all variables and function symbols occurring in t.

The value of a term t in a suitable structure A, denoted by A(t), is defined recursively:

$$A(x) = x^{A}$$

$$A(c) = c^{A}$$

$$A(f(t_{1},...,t_{k})) = f^{A}(A(t_{1}),...,A(t_{k}))$$

Example

$$A(f(g(a,z))) =$$

Definition

Let F be a formula and let $\mathcal{A}=(U_{\mathcal{A}},I_{\mathcal{A}})$ be a structure. \mathcal{A} is suitable for F if $I_{\mathcal{A}}$ is defined for all predicate and function symbols occurring in F and for all variables occurring free in F.

Evaluation of a formula in a structure

Let \mathcal{A} be suitable for F. The (truth)value of F in \mathcal{A} , denoted by $\mathcal{A}(F)$, is defined recursively:

$$\mathcal{A}(\neg F)$$
, $\mathcal{A}(F \land G)$, $\mathcal{A}(F \lor G)$, $\mathcal{A}(F \to G)$ as for propositional logic

$$\mathcal{A}(P(t_1,\ldots,t_k)) = \begin{cases} 1 & \text{if } (\mathcal{A}(t_1),\ldots,\mathcal{A}(t_k)) \in P^{\mathcal{A}} \\ 0 & \text{otherwise} \end{cases}$$

$$\mathcal{A}(\forall x \ F) = \begin{cases} 1 & \text{if for every } d \in U_{\mathcal{A}}, \ (\mathcal{A}[d/x])(F) = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\mathcal{A}(\exists x \ F) = \begin{cases} 1 & \text{if for some } d \in U_{\mathcal{A}}, \ (\mathcal{A}[d/x])(F) = 1 \\ 0 & \text{otherwise} \end{cases}$$

 $\mathcal{A}[d/x]$ coincides with \mathcal{A} everywhere except that $x^{\mathcal{A}[d/x]} = d$.

Example

$$A(\forall x \ P(x, f(x)) \land Q(g(a, z))) =$$

Notes

- During the evaluation of a formulas in a structure, the structure stays unchanged except for the interpretation of the variables.
- ► If the formula is closed, the initial interpretation of the variables is irrelevant.

Coincidence Lemma

Lemma

Let $\mathcal A$ and $\mathcal A'$ be two structures that coincide on all free variables, on all function symbols and all predicate symbols that occur in F. Then $\mathcal A(F)=\mathcal A'(F)$.

Proof.

Exercise.

Relation to propositional logic

- ▶ Every propositional formula can be seen as a formula of predicate logic where the atom A_i is replaced by the atom P_i^0 .
- Conversely, every formula of predicate logic that does not contain quantifiers and variables can be seen as a formula of propositional logic by replacing atomic formulas by propositional atoms.

Example

$$F = (Q(a) \lor \neg P(f(b), b) \land P(b, f(b)))$$
 can be viewed as the propositional formula $F' = (A_1 \lor \neg A_2 \land A_3).$

Exercise

F is satisfiable/valid iff F' is satisfiable/valid

Predicate logic with equality

Predicate logic + distinguished predicate symbol "=" of arity 2

Semantics: A structure A of predicate logic with equality always maps the predicate symbol = to the identity relation:

$$\mathcal{A}(=) = \{(d,d) \mid d \in U_{\mathcal{A}}\}$$

Model, validity, satisfiability

Like in propositional logic

Definition

We write $A \models F$ to denote that the structure A is suitable for the formula F and that A(F) = 1.

Then we say that F is true in A or that A is a model of F.

If every structure suitable for F is a model of F, then we write $\models F$ and say that F is valid.

If F has at least one model then we say that F is satisfiable.

V: valid S: satisfiable, but not valid U: unsatisfiable

	V	S	U
$\forall x \ P(a)$			
$\exists x \ (\neg P(x) \lor P(a))$			
$P(a) \rightarrow \exists x \ P(x)$			
$P(x) \rightarrow \exists x \ P(x)$			
$\forall x \ P(x) \to \exists x \ P(x)$			
$\forall x \ P(x) \land \neg \forall y \ P(y)$			

Consequence and equivalence

Like in propositional logic

Definition

A formula G is a consequence of a set of formulas M if every structure that is a model of all $F \in M$ and suitable for G is also a model of G. Then we write $M \models G$.

Two formulas F and G are (semantically) equivalent if every structure $\mathcal A$ suitable for both F and G satisfies $\mathcal A(F)=\mathcal A(G)$. Then we write $F\equiv G$.

- 1. $\forall x \ P(x) \lor \forall x \ Q(x,x)$
- 2. $\forall x (P(x) \lor Q(x,x))$
- 3. $\forall x \ (\forall z \ P(z) \lor \forall y \ Q(x,y))$

	Υ	N
1 = 2		
2 = 3		
3 ⊨ 1		

- 1. $\exists y \forall x \ P(x,y)$
- 2. $\forall x \exists y \ P(x,y)$

	Υ	N
1 = 2		
2 = 1		

	Υ	N
$\forall x \forall y \ F \ \equiv \ \forall y \forall x \ F$		
$\forall x \exists y \ F \equiv \exists x \forall y \ F$		
$\exists x \exists y \ F \equiv \exists y \exists x \ F$		
$\forall x \ F \lor \forall x \ G \equiv \forall x \ (F \lor G)$		
$\forall x \ F \land \forall x \ G \equiv \forall x \ (F \land G)$		
$\exists x \ F \lor \exists x \ G \equiv \exists x \ (F \lor G)$		
$\exists x \ F \land \exists x \ G \equiv \exists x \ (F \land G)$		

Equivalences

Theorem

- 1. $\neg \forall x F \equiv \exists x \neg F$ $\neg \exists x F \equiv \forall x \neg F$
- 2. If x does not occur free in G then:

$$(\forall x F \land G) \equiv \forall x (F \land G)$$

$$(\forall x F \vee G) \equiv \forall x (F \vee G)$$

$$(\exists x F \land G) \equiv \exists x (F \land G)$$

$$(\exists x F \lor G) \equiv \exists x (F \lor G)$$

3.
$$(\forall x F \land \forall x G) \equiv \forall x (F \land G)$$

 $(\exists x F \lor \exists x G) \equiv \exists x (F \lor G)$

4.
$$\forall x \forall y F \equiv \forall y \forall x F$$

 $\exists x \exists y F \equiv \exists y \exists x F$

Replacement theorem

Just like for propositional logic it can be proved:

Theorem

Let $F \equiv G$. Let H be a formula with an occurrence of F as a subformula. Then $H \equiv H'$, where H' is the result of replacing an arbitrary occurrence of F in H by G.