First-Order Logic Normal Forms

Abbreviations

We return to the abbreviations used in connection with resolution:

$$
\begin{array}{rll}
F_{1} \rightarrow F_{2} & \text { abbreviates } & \neg F_{1} \vee F_{2} \\
\top & \text { abbreviates } & P_{1}^{0} \vee \neg P_{1}^{0} \\
\perp & \text { abbreviates } & P_{1}^{0} \wedge \neg P_{1}^{0}
\end{array}
$$

Substitution

- Substitutions replace free variables by terms.
(They are mappings from variables to terms)
- By $[t / x]$ we denote the substitution that replaces x by t.
- The notation $F[t / x]$ (" F with t for x ") denotes the result of replacing all free occurrences of x in F by t.
Example
$(\forall x P(x) \wedge Q(x))[f(y) / x]=\forall x P(x) \wedge Q(f(y))$
- Similarly for subsitutions in terms:
$u[t / x]$ is the result of replacing x by t in term u.
Example
$(f(x))[g(x) / x]=f(g(x))$

Variable capture

Warning
If t contains a variable that is bound in F, substitution may lead to variable capture:

$$
(\forall x P(x, y))[f(x) / y]=\forall x P(x, f(x))
$$

Variable capture should be avoided

Substitution lemmas

Lemma (Substitution Lemma)
If t contains no variable bound in F then
$\mathcal{A}(F[t / x])=(\mathcal{A}[\mathcal{A}(t) / x])(F)$
Proof by structural induction on F
with the help of the corresponding lemma on terms:
Lemma
$\mathcal{A}(u[t / x])=(\mathcal{A}[\mathcal{A}(t) / x])(u)$
Proof by structural induction on u

Warning

The notation .[./.] is heavily overloaded:
Substitution in syntactic objects
$F[G / A]$ in propositional logic $F[t / x]$ $u[t / x]$ where u is a term
Function update
$\mathcal{A}[v / A]$ where \mathcal{A} is a propositional assignment $\mathcal{A}[d / x]$ where \mathcal{A} is a structure and $d \in U_{\mathcal{A}}$

Aim:
Transform any formula into an equisatisfiable closed formula

$$
\forall x_{1} \ldots \forall x_{n} G
$$

where G is quantifier-free.

Rectified Formulas

Definition

A formula is rectified if no variable occurs both bound and free and if all quantifiers in the formula bind different variables.

Lemma
Let $F=Q \times G$ be a formula where $Q \in\{\forall, \exists\}$.
Let y be a variable that does not occur in G.
Then $F \equiv Q y G[y / x]$.

Lemma

Every formula is equivalent to a rectified formula.
Example
$\forall x P(x, y) \wedge \exists x \exists y Q(x, y) \equiv \forall x^{\prime} P\left(x^{\prime}, y\right) \wedge \exists x \exists y^{\prime} Q\left(x, y^{\prime}\right)$

Prenex form

Definition

A formula is in prenex form if it has the form

$$
Q_{1} y_{1} \ldots Q_{n} y_{n} F
$$

where $Q_{i} \in\{\exists, \forall\}, n \geq 0$, and F is quantifier-free.

Prenex form

Theorem
Every formula is equivalent to a rectified formula in prenex form (a formula in RPF).
Proof First construct an equivalent rectified formula.
Then pull the quantifiers to the front using the following equivalences from left to right as long as possible:

$$
\begin{aligned}
\neg \forall x F & \equiv \exists x \neg F \\
\neg \exists x F & \equiv \forall x \neg F \\
Q \times F \wedge G & \equiv Q \times(F \wedge G) \\
F \wedge Q \times G & \equiv Q \times(F \wedge G) \\
Q \times F \vee G & \equiv Q \times(F \vee G) \\
F \vee Q \times G & \equiv Q \times(F \vee G)
\end{aligned}
$$

For the last four rules note that the formula is rectified!

Skolem form

The Skolem form of a formula F in RPF is the result of applying the following algorithm to F :
while F contains an existential quantifier do
Let $F=\forall y_{1} \forall y_{2} \ldots \forall y_{n} \exists z G$
(the block of universal quantifiers may be empty)
Let f be a fresh function symbol of arity n
that does not occur in F.
$F:=\forall y_{1} \forall y_{2} \ldots \forall y_{n} G\left[f\left(y_{1}, y_{2}, \ldots, y_{n}\right) / z\right]$
i.e. remove the outermost existential quantifier in F and replace every occurrence of z in G by $f\left(y_{1}, y_{2}, \ldots, y_{n}\right)$

Example
$\exists x \forall y \exists z \forall u \exists v P(x, y, z, u, v)$

Skolem form

Theorem
A formula in RPF and its Skolem form are equisatisfiable.
Proof Every iteration produces an equisatisfiable formula.
Let (for simplicity) $F=\forall y \exists z G$ and $F^{\prime}=\forall y \quad G[f(y) / z]$.

1. $F^{\prime} \models F$

Assume \mathcal{A} is suitable for F^{\prime} and $\mathcal{A}\left(F^{\prime}\right)=1$.
\Rightarrow for all $u \in U_{\mathcal{A}}, \mathcal{A}[u / y](G[f(y) / z])=1$
\Rightarrow for all $u \in U_{\mathcal{A}}, \mathcal{A}[u / y]\left[f^{\mathcal{A}}(u) / z\right](G)=1$
\Rightarrow for all $u \in U_{\mathcal{A}}$ there is a $v \in U_{\mathcal{A}}$ s.t. $\mathcal{A}[u / y][v / z](G)=1$
$\Rightarrow \mathcal{A}(F)=1$

Skolem form

Theorem
A formula in RPF and its Skolem form are equisatisfiable.
Proof Every iteration produces an equisatisfiable formula.
Let (for simplicity) $F=\forall y \exists z G$ and $F^{\prime}=\forall y \quad G[f(y) / z]$.
2. If F has a model, so does F^{\prime}

Assume \mathcal{A} is suitable for F and $\mathcal{A}(F)=1$.
Wog \mathcal{A} does not define f (because f is new)
\Rightarrow for all $u \in U_{\mathcal{A}}$ there is a $v \in U_{\mathcal{A}}$ s.t. $\mathcal{A}[u / y][v / z](G)=1$
Let \mathcal{A}^{\prime} be \mathcal{A} extended with a definition of f :
$f^{\mathcal{A}^{\prime}}(u):=v$ where v is chosen as in $(*)$
$\Rightarrow \mathcal{A}^{\prime}\left(F^{\prime}\right)=1$ because for all $u \in U_{\mathcal{A}}$:

$$
\mathcal{A}^{\prime}[u / y](G[f(y) / z])
$$

$=\mathcal{A}^{\prime}[u / y]\left[f \mathcal{A}^{\prime}(u) / z\right](G)$
$=\mathcal{A}^{\prime}[u / y][v / z](G)$
$=1$

Summary: conversion to Skolem form

Input: a formula F
Output: an equisatisfiable, rectified, closed formula in Skolem form $\forall y_{1} \ldots \forall y_{k} G$ where G is quantifier-free

1. Rectify F by systematic renaming of bound variables. The result is a formula F_{1} equivalent to F.
2. Let $y_{1}, y_{2}, \ldots, y_{n}$ be the variables occurring free in F_{1}. Produce the formula $F_{2}=\exists y_{1} \exists y_{2} \ldots \exists y_{n} F_{1}$. F_{2} is equisatisfiable with F_{1}, rectified and closed.
3. Produce a formula F_{3} in RPF equivalent to F_{2}.
4. Eliminate the existential quantifiers in F_{3} by transforming F_{3} into its Skolem form F_{4}.
The formula F_{4} is equisatisfiable with F_{3}.

Exercise

Which formulas are rectified, in prenex, or Skolem form?

	R	P	S
$\forall x(T(x) \vee C(x) \vee D(x))$			
$\exists x \exists y(C(y) \vee B(x, y))$			
$\neg \exists x C(x) \leftrightarrow \forall x \neg C(x)$			
$\forall x(C(x) \rightarrow S(x)) \rightarrow \forall y(\neg C(y) \rightarrow \neg S(y))$			

Convert into Skolem form:
$F=\forall x P(y, f(x, y)) \vee \neg \forall y Q(g(x), y)$

