First-Order Logic Normal Forms

We return to the abbreviations used in connection with resolution:

- $F_1 \rightarrow F_2$ abbreviates $\neg F_1 \lor F_2$
 - $\begin{array}{c} \top \quad \text{abbreviates} \quad P_1^0 \lor \neg P_1^0 \\ \bot \quad \text{abbreviates} \quad P_1^0 \land \neg P_1^0 \end{array}$

Substitution

- Substitutions replace *free* variables by terms. (They are mappings from variables to terms)
- By [t/x] we denote the substitution that replaces x by t.
- The notation F[t/x] ("F with t for x") denotes the result of replacing all free occurrences of x in F by t. Example

 $(\forall x \ P(x) \land Q(x))[f(y)/x] = \forall x \ P(x) \land Q(f(y))$

Similarly for subsitutions in terms: u[t/x] is the result of replacing x by t in term u. Example (f(x))[g(x)/x] = f(g(x))

Variable capture

Warning

If t contains a variable that is bound in F, substitution may lead to variable capture:

$$(\forall x \ P(x,y))[f(x)/y] = \forall x \ P(x,f(x))$$

Variable capture should be avoided

Substitution lemmas

Lemma (Substitution Lemma)

If t contains no variable bound in F then $\mathcal{A}(F[t/x]) = (\mathcal{A}[\mathcal{A}(t)/x])(F)$

Proof by structural induction on *F* with the help of the corresponding lemma on terms:

Lemma $\mathcal{A}(u[t/x]) = (\mathcal{A}[\mathcal{A}(t)/x])(u)$

Proof by structural induction on *u*

Warning

The notation .[./.] is heavily overloaded:

```
Substitution in syntactic objects

F[G/A] in propositional logic

F[t/x]

u[t/x] where u is a term
```

Function update

 $\mathcal{A}[v/A]$ where \mathcal{A} is a propositional assignment $\mathcal{A}[d/x]$ where \mathcal{A} is a structure and $d \in U_{\mathcal{A}}$

Aim:

Transform any formula into an equisatisfiable closed formula

 $\forall x_1 \ldots \forall x_n G$

where *G* is *quantifier-free*.

Rectified Formulas

Definition

A formula is rectified if no variable occurs both bound and free and if all quantifiers in the formula bind different variables.

Lemma

Let F = QxG be a formula where $Q \in \{\forall, \exists\}$. Let y be a variable that does not occur in G. Then $F \equiv QyG[y/x]$.

Lemma

Every formula is equivalent to a rectified formula.

Example

 $\forall x \ P(x,y) \land \exists x \exists y \ Q(x,y) \ \equiv \ \forall x' \ P(x',y) \land \exists x \exists y' \ Q(x,y')$

Prenex form

Definition

A formula is in prenex form if it has the form

 $Q_1y_1\ldots Q_ny_n F$

where $Q_i \in \{\exists, \forall\}$, $n \ge 0$, and F is quantifier-free.

Prenex form

Theorem

Every formula is equivalent to a rectified formula in prenex form (a formula in **RPF**).

Proof First construct an equivalent rectified formula. Then pull the quantifiers to the front using the following equivalences from left to right as long as possible:

$$\neg \forall x \ F \equiv \exists x \neg F$$

$$\neg \exists x \ F \equiv \forall x \neg F$$

$$Qx \ F \land G \equiv Qx \ (F \land G)$$

$$F \land Qx \ G \equiv Qx \ (F \land G)$$

$$Qx \ F \lor G \equiv Qx \ (F \lor G)$$

$$F \lor Qx \ G \equiv Qx \ (F \lor G)$$

$$F \lor Qx \ G \equiv Qx \ (F \lor G)$$

$$F \lor Qx \ G \equiv Qx \ (F \lor G)$$

For the last four rules note that the formula is rectified!

Skolem form

The Skolem form of a formula F in RPF is the result of applying the following algorithm to F:

while F contains an existential quantifier do

Let $F = \forall y_1 \forall y_2 \dots \forall y_n \exists z G$

(the block of universal quantifiers may be empty)

Let f be a fresh function symbol of arity n that does not occur in F.

$$F := \forall y_1 \forall y_2 \dots \forall y_n \ G[f(y_1, y_2, \dots, y_n)/z]$$

i.e. remove the outermost existential quantifier in F and replace every occurrence of z in G by $f(y_1, y_2, \ldots, y_n)$

Example

 $\exists x \,\forall y \,\exists z \,\forall u \,\exists v \, P(x, y, z, u, v)$

Skolem form

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Proof Every iteration produces an equisatisfiable formula. Let (for simplicity) $F = \forall y \exists z \ G$ and $F' = \forall y \ G[f(y)/z]$. 1. $F' \models F$

Assume A is suitable for F' and A(F') = 1.

- \Rightarrow for all $u \in U_{\mathcal{A}}$, $\mathcal{A}[u/y](\mathcal{G}[f(y)/z]) = 1$
- \Rightarrow for all $u \in U_{\mathcal{A}}$, $\mathcal{A}[u/y][f^{\mathcal{A}}(u)/z](\mathcal{G}) = 1$
- $\Rightarrow \text{ for all } u \in U_{\mathcal{A}} \text{ there is a } v \in U_{\mathcal{A}} \text{ s.t. } \mathcal{A}[u/y][v/z](\mathcal{G}) = 1$ $\Rightarrow \mathcal{A}(\mathcal{F}) = 1$

Skolem form

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Proof Every iteration produces an equisatisfiable formula. Let (for simplicity) $F = \forall y \exists z \ G$ and $F' = \forall y \ G[f(y)/z]$. 2. If F has a model, so does F'Assume \mathcal{A} is suitable for F and $\mathcal{A}(F) = 1$. Wlog \mathcal{A} does not define f (because f is new) \Rightarrow for all $u \in U_A$ there is a $v \in U_A$ s.t. $\mathcal{A}[u/y][v/z](G) = 1$ (*)Let \mathcal{A}' be \mathcal{A} extended with a definition of f: $f^{\mathcal{A}'}(u) := v$ where v is chosen as in (*) $\Rightarrow \mathcal{A}'(F') = 1$ because for all $u \in U_A$: $\mathcal{A}'[u/y](G[f(y)/z])$ $= \mathcal{A}'[u/y][f^{\mathcal{A}'}(u)/z](G)$ $= \mathcal{A}'[u/y][v/z](G)$ = 1

Summary: conversion to Skolem form

Input: a formula F

Output: an equisatisfiable, rectified, closed formula in Skolem form $\forall y_1 \dots \forall y_k \ G$ where G is quantifier-free

- 1. Rectify F by systematic renaming of bound variables. The result is a formula F_1 equivalent to F.
- 2. Let y_1, y_2, \ldots, y_n be the variables occurring free in F_1 . Produce the formula $F_2 = \exists y_1 \exists y_2 \ldots \exists y_n F_1$. F_2 is equisatisfiable with F_1 , rectified and closed.
- 3. Produce a formula F_3 in RPF equivalent to F_2 .
- 4. Eliminate the existential quantifiers in F_3 by transforming F_3 into its Skolem form F_4 . The formula F_4 is equisatisfiable with F_3 .

Exercise

Which formulas are rectified, in prenex, or Skolem form?

RPS
$$\forall x(T(x) \lor C(x) \lor D(x))$$
 $\exists x \exists y(C(y) \lor B(x, y))$ $\exists x \exists y(C(y) \lor B(x, y))$ $\neg \exists x C(x) \leftrightarrow \forall x \neg C(x)$ $\forall x(C(x) \rightarrow S(x)) \rightarrow \forall y(\neg C(y) \rightarrow \neg S(y))$

Convert into Skolem form: $F = \forall x P(y, f(x, y)) \lor \neg \forall y Q(g(x), y)$