First-Order Logic Basic Proof Theory

Gebundene Namen sind Schall und Rauch

We permit ourselves to identify formulas that differ only in the names of bound variables.

Example

 $\forall x \exists y P(x, y) = \forall u \exists v P(u, v)$

The renaming must not capture free variables: $\forall x P(x, y) \neq \forall y P(y, y)$

Substitution F[t/x] assumes that bound variables in F are automatically renamed to avoid capturing free variables in t.

Example

$$(\forall x P(x,y))[f(x)/y] = \forall x' P(x',f(x))$$

All proof systems below are extensions of the corresponding propositional systems

Sequent Calculus

Sequent Calculus rules

$$\frac{F[t/x], \forall x F, \Gamma \Rightarrow \Delta}{\forall x F, \Gamma \Rightarrow \Delta} \forall L \qquad \frac{\Gamma \Rightarrow F[y/x], \Delta}{\Gamma \Rightarrow \forall x F, \Delta} \forall R(*)$$
$$\frac{F[y/x], \Gamma \Rightarrow \Delta}{\exists x F, \Gamma \Rightarrow \Delta} \exists L(*) \qquad \frac{\Gamma \Rightarrow F[t/x], \exists x F, \Delta}{\Gamma \Rightarrow \exists x F, \Delta} \exists R$$

(*): y not free in the conclusion of the rule

Note: $\forall L$ and $\exists R$ do not delete the principal formula

Soundness

Lemma

For every quantifier rule $\frac{S'}{S}$, |S| and |S'| are equivalid.

Theorem (Soundness)

If $\vdash_G S$ then $\models |S|$.

Proof induction on the size of the proof of $\vdash_G S$ using the above lemma and the corresponding propositional lemma $(|S| \equiv |S_1| \land \ldots \land |S_n|).$

Construct counter model from (possibly infinite!) failed proof search

Let e_0, e_1, \ldots be an enumeration of all terms (over some given set of function symbols and variables)

Proof search

Construct proof tree incrementally:

- 1. Pick some uproved leaf $\Gamma \Rightarrow \Delta$ such that some rule is applicable.
- 2. Pick some principal formula in $\Gamma \Rightarrow \Delta$ fairly and apply rule. $\forall R, \exists L$: pick some arbitrary new y $\forall L, \exists R$: $\begin{cases} e_0 & \text{if the p.f. has never been instantiated} \end{cases}$
 - $t = \begin{cases} e_0 & \text{if the p.f. has never been instantiated} \\ (on the path to the root) \\ e_{i+1} & \text{if the previous instantiation of the p.f.} \\ (on the path to the root) used e_i \end{cases}$

Failed proof search: there is a branch A such that A ends in a sequent where no rule is applicable or A is infinite.

Construction of Herbrand countermodel \mathcal{A} from A

 $U_{\mathcal{A}} = \text{all terms over the function symbols and variables in } A$ $f^{\mathcal{A}}(t_1, \dots, t_n) = f(t_1, \dots, t_n)$ $P^{\mathcal{A}} = \{(t_1, \dots, t_n) \mid P(t_1, \dots, t_n) \in \Gamma \text{ for some } \Gamma \Rightarrow \Delta \in A\}$

Theorem

For all
$$\Gamma \Rightarrow \Delta \in A$$
: $\mathcal{A}(F) = \left\{ egin{array}{cc} 1 & \textit{if} \ F \in \Gamma \\ 0 & \textit{if} \ F \in \Delta \end{array}
ight.$

Proof by induction on the structure of F $F = P(t_1,\ldots,t_n)$: $F \in \Gamma \Rightarrow \mathcal{A}(F) = 1$ by def $F \in \Delta \Rightarrow F \notin any \ \Gamma \in A$, (A would end in Ax) $\Rightarrow \mathcal{A}(F) = 0$ *F* not atomic \Rightarrow *F* must be p.f. in some $\Gamma \Rightarrow \Delta \in A$ (fairness!) Let $\Gamma' \Rightarrow \Delta'$ be the next sequent in A $F = \neg G$: $F \in \Gamma$ iff $G \in \Delta'$ iff $\mathcal{A}(G) = 0$ (IH) iff $\mathcal{A}(F) = 1$ $F = G_1 \wedge G_2$ $F \in \Gamma \Rightarrow G_1, G_2 \in \Gamma' \Rightarrow A(G_1) = A(G_2) = 1 (\mathsf{IH}) \Rightarrow A(F) = 1$ $F \in \Delta \Rightarrow G_1 \in \Delta'$ or $G_2 \in \Delta' \Rightarrow \mathcal{A}(G_1) = 0$ or $\mathcal{A}(G_2) = 0$ (IH) $\Rightarrow \mathcal{A}(F) = 0$ $F = \forall x \ G: \ F \in \Delta \Rightarrow G[y/x] \in \Delta' \Rightarrow \mathcal{A}(G[y/x]) = 0 \ (\mathsf{IH})$ $\Rightarrow \mathcal{A}[\mathcal{A}(y)/x](G) = 0 \Rightarrow \mathcal{A}(F) = 0$

Completeness

Corollary

```
If proof search with root \Gamma \Rightarrow \Delta fails,
then there is a structure \mathcal{A} such that \mathcal{A}(\bigwedge \Gamma \rightarrow \bigvee \Delta) = 0.
```

Example

 $\exists x P(x) \Rightarrow \forall x P(x)$

Corollary (Completeness)

If $\models |\Gamma \rightarrow \Delta|$ then $\vdash_G \Gamma \Rightarrow \Delta$

Proof by contradiction. If not $\vdash_G \Gamma \Rightarrow \Delta$ then proof search fails. Then there is an \mathcal{A} such that $\mathcal{A}(\bigwedge \Gamma \rightarrow \bigvee \Delta) = 0$. Therefore not $\models |\Gamma \rightarrow \Delta|$.

Natural Deduction

Natural Deduction rules

$$\frac{F[y/x]}{\forall x F} \forall I(*) \qquad \frac{\forall x F}{F[t/x]} \forall E$$

$$\begin{bmatrix} F[y/x]] \\ \vdots \\ \vdots \\ \exists x F \end{bmatrix} \exists I \qquad \frac{\exists x F H}{H} \exists E(**)$$

(*): (y = x or y ∉ fv(F)) and y not free in an open assumption in the proof of F[y/x]
(**): (y = x or y ∉ fv(F)) and y not free in H or in an open assumption in the proof of the second premise, except for F[y/x] Theorem (Soundness) If $\Gamma \vdash_N F$ then $\Gamma \models F$

 \Rightarrow \Rightarrow

Proof as before, with additional cases:

$$[F[y/x]]$$

$$\exists x F \qquad H \qquad \exists E(**) \qquad H: \Gamma \models \exists xF \text{ and } F[y/x], \Gamma \models H$$
Show $\Gamma \models H$. Assume $\mathcal{A} \models \Gamma$.
 $\Rightarrow \mathcal{A} \models \exists x F \text{ (by IH)} \Rightarrow \text{there is a } u \in U_{\mathcal{A}} \text{ s.t. } \mathcal{A}[u/x] \models F$
 $\Rightarrow \mathcal{A}[u/y] \models F[y/x] \qquad \text{because } y = x \text{ or } y \notin fv(F)$

$$\mathcal{A}[u/y] \models \Gamma \qquad \text{because } v \text{ not free in } \Gamma$$

 $\mathcal{A}[u/y] \models I$ because y not free in I $\Rightarrow \mathcal{A}[u/y] \models H$ by IH $\Rightarrow \mathcal{A} \models H$ because y not free in proof of 2nd prem. Theorem (ND can simulate SC) If $\vdash_G \Gamma \Rightarrow \Delta$ then $\Gamma, \neg \Delta \vdash_N \bot$ (where $\neg \{F_1, ...\} = \{\neg F_1, ...\}$) **Proof** by induction on (the depth of) $\vdash_G \Gamma \Rightarrow \Delta$

Corollary (Completeness of ND)

If $\Gamma \models F$ then $\Gamma \vdash_N F$

Proof as before: compactness, completeness of \vdash_G , translation to \vdash_N

Translation from \vdash_N to \vdash_G also as before: $I \mapsto R, E \mapsto L + cut$

Equality

Hilbert System

Hilbert System

Additional rule $\forall I$: if *F* is provable then $\forall y F[y/x]$ is provable provided *x* not free in the assumptions and $(y = x \text{ or } y \notin fv(F))$

Additional axioms:

$$\forall x F \to F[t/x] F[t/x] \to \exists x F \forall x(G \to F) \to (G \to \forall y F[y/x]) \quad (*) \forall x(F \to G) \to (\exists y F[y/x] \to G) \quad (*) (*) if x \notin fv(G) and (y = x or y \notin fv(F))$$

Equivalence of Hilbert and ND

As before, with additional cases.