First-Order Logic Basic Proof Theory

Gebundene Namen sind Schall und Rauch

We permit ourselves to identifty formulas that differ only in the names of bound variables.

Example
$\forall x \exists y P(x, y)=\forall u \exists v P(u, v)$
The renaming must not capture free variables:
$\forall x P(x, y) \neq \forall y P(y, y)$
Substitution $F[t / x]$ assumes that bound variables in F are automatically renamed to avoid capturing free variables in t.

Example
$(\forall x P(x, y))[f(x) / y]=\forall x^{\prime} P\left(x^{\prime}, f(x)\right)$

All proof systems below are extensions of the corresponding propositional systems

Sequent Calculus

Sequent Calculus rules

$$
\begin{array}{ll}
\frac{F[t / x], \forall x F, \Gamma \Rightarrow \Delta}{\forall x F, \Gamma \Rightarrow \Delta} \forall L & \frac{\Gamma \Rightarrow F[y / x], \Delta}{\Gamma \Rightarrow \forall x F, \Delta} \forall R(*) \\
\frac{F[y / x], \Gamma \Rightarrow \Delta}{\exists x F, \Gamma \Rightarrow \Delta} \exists L(*) & \frac{\Gamma \Rightarrow F[t / x], \exists x F, \Delta}{\Gamma \Rightarrow \exists x F, \Delta} \exists R
\end{array}
$$

(*): y not free in the conclusion of the rule
Note: $\forall L$ and $\exists R$ do not delete the principal formula

Soundness

Lemma
For every quantifier rule $\frac{S^{\prime}}{S},|S|$ and $\left|S^{\prime}\right|$ are equivalid.
Theorem (Soundness)
If $\vdash_{G} S$ then $\vDash|S|$.
Proof induction on the size of the proof of $\vdash_{G} S$
using the above lemma and the corresponding propositional lemma $\left(|S| \equiv\left|S_{1}\right| \wedge \ldots \wedge\left|S_{n}\right|\right)$.

Completeness Proof

Construct counter model from (possibly infinite!) failed proof search
Let e_{0}, e_{1}, \ldots be an enumeration of all terms (over some given set of function symbols and variables)

Proof search

Construct proof tree incrementally:

1. Pick some uproved leaf $\Gamma \Rightarrow \Delta$
such that some rule is applicable.
2. Pick some principal formula in $\Gamma \Rightarrow \Delta$ fairly and apply rule. $\forall R, \exists L$: pick some arbitrary new y $\forall L, \exists R$:

$$
t= \begin{cases}e_{0} & \begin{array}{l}
\text { if the p.f. has never been instantiated } \\
\text { (on the path to the root) }
\end{array} \\
e_{i+1} & \begin{array}{l}
\text { if the previous instantiation of the p.f. } \\
\text { (on the path to the root) used } e_{i}
\end{array}\end{cases}
$$

Failed proof search: there is a branch A such that A ends in a sequent where no rule is applicable or A is infinite.

Construction of Herbrand countermodel \mathcal{A} from A

$U_{\mathcal{A}}=$ all terms over the function symbols and variables in A
$f^{\mathcal{A}}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$
$P^{\mathcal{A}}=\left\{\left(t_{1}, \ldots, t_{n}\right) \mid P\left(t_{1}, \ldots, t_{n}\right) \in \Gamma\right.$ for some $\left.\Gamma \Rightarrow \Delta \in A\right\}$

Theorem

For all $\Gamma \Rightarrow \Delta \in A: \mathcal{A}(F)= \begin{cases}1 & \text { if } F \in \Gamma \\ 0 & \text { if } F \in \Delta\end{cases}$
Proof by induction on the structure of F
$F=P\left(t_{1}, \ldots, t_{n}\right)$:
$F \in \Gamma \Rightarrow \mathcal{A}(F)=1$ by def
$F \in \Delta \Rightarrow F \notin$ any $\Gamma \in A$, (A would end in $A x) \Rightarrow \mathcal{A}(F)=0$
F not atomic $\Rightarrow F$ must be p.f. in some $\Gamma \Rightarrow \Delta \in A$ (fairness!)
Let $\Gamma^{\prime} \Rightarrow \Delta^{\prime}$ be the next sequent in A
$F=\neg G: F \in \Gamma$ iff $G \in \Delta^{\prime}$ iff $\mathcal{A}(G)=0$ (IH) iff $\mathcal{A}(F)=1$
$F=G_{1} \wedge G_{2}:$
$F \in \Gamma \Rightarrow G_{1}, G_{2} \in \Gamma^{\prime} \Rightarrow A\left(G_{1}\right)=\mathcal{A}\left(G_{2}\right)=1(\mathrm{IH}) \Rightarrow \mathcal{A}(F)=1$
$F \in \Delta \Rightarrow G_{1} \in \Delta^{\prime}$ or $G_{2} \in \Delta^{\prime} \Rightarrow \mathcal{A}\left(G_{1}\right)=0$ or $\mathcal{A}\left(G_{2}\right)=0(\mathrm{IH})$
$\Rightarrow \mathcal{A}(F)=0$
$F=\forall x G: F \in \Delta \Rightarrow G[y / x] \in \Delta^{\prime} \Rightarrow \mathcal{A}(G[y / x])=0(\mathrm{IH})$
$\Rightarrow \mathcal{A}[\mathcal{A}(y) / x](G)=0 \Rightarrow \mathcal{A}(F)=0$

Completeness

Corollary

If proof search with root $\Gamma \Rightarrow \Delta$ fails, then there is a structure \mathcal{A} such that $\mathcal{A}(\bigwedge \Gamma \rightarrow \bigvee \Delta)=0$.

Example
$\exists x P(x) \Rightarrow \forall x P(x)$

Corollary (Completeness)
If $\models|\Gamma \rightarrow \Delta|$ then $\vdash_{G} \Gamma \Rightarrow \Delta$
Proof by contradiction. If not $\vdash_{G} \Gamma \Rightarrow \Delta$ then proof search fails.
Then there is an \mathcal{A} such that $\mathcal{A}(\bigwedge \Gamma \rightarrow \bigvee \Delta)=0$.
Therefore not $\models|\Gamma \rightarrow \Delta|$.

Natural Deduction

Natural Deduction rules

$$
\begin{array}{lc}
\frac{F[y / x]}{\forall x F} \forall I(*) & \frac{\forall x F}{F[t / x]} \forall E \\
& {[F[y / x]]} \\
& \vdots \\
\frac{F[t / x]}{\exists x F} \exists I & \frac{\exists x F \quad \dot{H}}{H} \exists E(* *)
\end{array}
$$

$(*):(y=x$ or $y \notin f v(F))$ and
y not free in an open assumption in the proof of $F[y / x]$
$(* *):(y=x$ or $y \notin f v(F))$ and
y not free in H or in an open assumption in the proof of the second premise, except for $F[y / x]$

Theorem (Soundness)
If $\Gamma \vdash_{N} F$ then $\Gamma \models F$
Proof as before, with additional cases:

$$
\begin{gathered}
{[F[y / x]]} \\
\vdots \\
\frac{\exists x F \quad \stackrel{H}{H}}{H} \exists E(* *)
\end{gathered}
$$

$$
\mathrm{IH}: \Gamma \models \exists x F \text { and } F[y / x], \Gamma \models H
$$

Show $\Gamma \models H$. Assume $\mathcal{A} \models \Gamma$.
$\Rightarrow \mathcal{A} \vDash \exists x F($ by IH$) \Rightarrow$ there is a $u \in U_{\mathcal{A}}$ s.t. $\mathcal{A}[u / x] \models F$
$\Rightarrow \mathcal{A}[u / y] \models F[y / x] \quad$ because $y=x$ or $y \notin f v(F)$
$\mathcal{A}[u / y] \models \Gamma \quad$ because y not free in Γ
$\Rightarrow \mathcal{A}[u / y] \models H \quad$ by IH
$\Rightarrow \mathcal{A} \models H \quad$ because y not free in proof of 2nd prem.

Theorem (ND can simulate SC)
If $\vdash_{G} \Gamma \Rightarrow \Delta$ then $\Gamma, \neg \Delta \vdash_{N} \perp\left(\right.$ where $\left.\neg\left\{F_{1}, \ldots\right\}=\left\{\neg F_{1}, \ldots\right\}\right)$
Proof by induction on (the depth of) $\vdash_{G} \Gamma \Rightarrow \Delta$

Corollary (Completeness of ND)
If $\Gamma \vDash F$ then $\Gamma \vdash_{N} F$
Proof as before: compactness, completeness of \vdash_{G}, translation to \vdash_{N}

Translation from \vdash_{N} to \vdash_{G} also as before: $I \mapsto R, E \mapsto L+c u t$

Equality

Hilbert System

Hilbert System

Additional rule $\forall I$:
if F is provable then $\forall y F[y / x]$ is provable provided x not free in the assumptions and $(y=x$ or $y \notin f v(F))$
Additional axioms:
$\forall x F \rightarrow F[t / x]$
$F[t / x] \rightarrow \exists x F$
$\forall x(G \rightarrow F) \rightarrow(G \rightarrow \forall y F[y / x])$
$\forall x(F \rightarrow G) \rightarrow(\exists y F[y / x] \rightarrow G)$
$(*)$ if $x \notin f v(G)$ and $(y=x$ or $y \notin f v(F))$

Equivalence of Hilbert and ND

As before, with additional cases.

