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Helpful lemmas

Let S be a set of sentences.

Lemma
S |= F iff S |= ∀F

Lemma
If S |= F ↔ G then S |= H[F ]↔ H[G ],
i.e. one can replace a subformula F of H by G .
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Quantifier elimination

Definition
If T |= F ↔ F ′ we say that F and F ′ are T -equivalent.

Definition
A theory T admits quantifier elimination if for every formula F
there is a quantifier-free T -equivalent formula G such that
fv(G ) ⊆ fv(F ). We call G a quantifier-free T -equivalent of F .

Examples

In linear real arithmetic:
∃x∃y (3 ∗ x + 5 ∗ y = 7) ↔ ?
∀y (x < y ∧ y < z) ↔ ?
∃y (x < y ∧ y < z) ↔ ?
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Quantifier elimination

A quantifier-elimination procedure (QEP) for a theory T and a set
of formulas F is a function that computes for every F ∈ F a
quantifier-free T -equivalent.

Lemma
Let T be a theory such that

I T has a QEP for all formulas and

I for all ground formulas G , T |= G or T |= ¬G ,
and it is decidable which is the case.

Then T is decidable and complete.
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Simplifying quantifier elimination: one ∃

Fact
If T has a QEP for all ∃x F where F is quantifier-free,
then T has a QEP for all formulas.

Essence: It is sufficient to be able to eliminate a single ∃

Construction:

Given: a QEP qe1 for formulas of the form ∃x F where F is
quantifier-free

Define: a QEP for all formulas
Method: Eliminate quantifiers bottom-up by qe1, use ∀ ≡ ¬∃¬
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Simplifying quantifier elimination: ∃x
∧
literals

Lemma
If T has a QEP for all ∃x F where F is a conjunction of literals,
all of which contain x ,
then T has a QEP for all ∃x F where F is quantifier-free.

Construction:

Given: a QEP qe1c for formulas of the form ∃x (L1 ∧ · · · ∧ Ln)
where each Li is a literal that contains x

Define: qe1(∃x F ) where F is quantifier-free
Method: DNF; miniscoping; qe1c

This is the end of the generic part of quantifier elimination.
The rest is theory specific.
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Eliminating “¬”

Motivation: ¬x < y ↔ y < x ∨ y = x for linear orderings

Assume that there is a computable function aneg that maps every
negated atom to a quantifier-free and negation-free T -equivalent
formula.

Lemma
If T has a QEP for all ∃x F where F is a conjunction of atoms,
all of which contain x ,
then T has a QEP for all ∃x F where F is quantifier-free.

Construction:

Given: a QEP qe1ca for formulas of the form ∃x (A1 ∧ · · · ∧ An)
where each atom Ai contains x

Define: qe1(∃x F ) where F quantifier-free
Method: NNF; aneg ; DNF; miniscoping; qe1ca
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Quantifier Elimination

Dense Linear Orders
Without Endpoints
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Dense Linear Orders Without Endpoints
Σ = {<,=}
Let DLO stand for “dense linear order without endpoints”
and for the following set of axioms:

∀x∀y∀z (x < y ∧ y < z → x < z)

∀x ¬(x < x)

∀x∀y (x < y ∨ x = y ∨ y < x)

∀x∀z (x < z → ∃y (x < y ∧ y < z)

∀x∃y x < y

∀x∃y y < x

Models of DLO?

Theorem
All countable DLOs are isomorphic.
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Quantifier elimination example

Example

DLO |= ∃y (x < y ∧ y < z) ↔
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Eliminiation of “¬”

Elimination of negative literals (function aneg):
DLO |= ¬x = y ↔ x < y ∨ y < x
DLO |= ¬x < y ↔ x = y ∨ y < x
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Quantifier elimination for conjunctions of atoms
QEP qe1ca(∃x (A1 ∧ · · · ∧ An) where x occurs in all Ai :

1. Eliminate “=”: Drop all Ai of the form x = x .
If some Ai is of the form x = y (x and y different), eliminate ∃x :

∃x (x = t ∧ F ) ≡ F [t/x ] (x does not occur in t)

Otherwise:

2. Eliminate x < x : return ⊥
3. Separate atoms into lower and upper bounds for x and use

DLO |= ∃x(
m∧
i=1

li < x ∧
n∧

j=1

x < uj) ↔
m∧
i=1

n∧
j=1

li < uj

Special case:
∧0

k=1 Fk = >
Examples

∃x (x < z ∧ y < x ∧ x < y ′) ↔ ?
∀x (x < y) ↔ ?
∃x∃y∃z (x < y ∧ y < z ∧ z < x) ↔ ?
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Complexity

Quadratic blow-up with each elimination step

⇒ Eliminating all ∃ from

∃x1 . . . ∃xm F

where F has length n needs O(

n2m

), assuming F is DNF.
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Consequences

I Cn(DLO) has quantifier elimination

I Cn(DLO) is decidable and complete

I All models of DLO (for example (Q, <) and (R, <))
are elementarily equivalent:
you cannot distinguish models of DLO by first-order formulas.

14



Quantifier Elimination

Linear real arithmetic
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Linear real arithmetic

R+ = (R, 0, 1,+, <,=), R+ = Th(R+)

For convenience we allow the following additional function symbols:
For every c ∈ Q:

I c is a constant symbol

I c ·, multiplication with c , is a unary function symbol

A term in normal form: c1 · x1 + . . . + cn · xn + c
where ci 6= 0, xi 6= xj if i 6= j .

Every atom A is R+-equivalent to an atom 0 ./ t in normal form
(NF) where ./ ∈ {<,=} and t is in normal form.

An atom is solved for x if it is of the form x < t, x = t or t < x
where x does not occur in t.
Any atom A in normal form that contains x can be transformed
into an R+-equivalent atom solved for x .
Function solx(A) solves A for x .
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Eliminiation of “¬”

Elimination of negative literals (function aneg):
R+ |= ¬x = y ↔ x < y ∨ y < x
R+ |= ¬x < y ↔ x = y ∨ y < x
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Fourier-Motzkin Elimination
QEP qe1ca(∃x (A1 ∧ · · · ∧ An), all Ai in NF and contain x :

1. Let S = {solx(A1), . . . , solx(An)}
2. Eliminate “=”:
If (x = t) ∈ S for some t, eliminate ∃x :

∃x (x = t ∧ F ) ≡ F [t/x ] (x does not occur in t)

Otherwise return ∧
(l<x)∈S

∧
(x<u)∈S

l < u

Special case: empty
∧

is >

All returned formulas are implicitly put into NF.

Examples

∃x∃y (3x + 5y < 7 ∧ 2x − 3y < 2) ↔ ?
∃x∀y (3y ≤ x ∨ x ≤ 2y) ↔ ?
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Can DNF be avoided?
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Ferrante and Rackoff’s theorem

Theorem
Let F be quantifier-free and negation-free and assume all atoms
that contain x are solved for x . Let Sx be the set of atoms in F
that contain x . Let L = {l | (l < x) ∈ Sx},
U = {u | (x < u) ∈ Sx}, E = {t | (x = t) ∈ Sx}. Then

R+ |= ∃x F ↔ F [−∞/x ] ∨ F [∞/x ] ∨∨
t∈E

F [t/x ] ∨
∨
l∈L

∨
u∈U

F [0.5(l + u)/x ]

(note: empty
∨

is ⊥) where F [−∞/x ] (F [∞/x ]) is the following
transformation of all solved atoms in F : x < t 7→ > (⊥)

t < x 7→ ⊥ (>)
x = t 7→ ⊥ (⊥)

Examples

∃x (y < x ∧ x < z) ↔ ?
∃x x < y ↔ ?
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Ferrante and Rackoff’s procedure

Define qe1(∃x F ):

1. Put F into NNF, eliminate all negations,
put all atoms into normal form,
solve those atoms for x that contain x .

2. Apply Ferrante and Rackoff’s theorem.

Theorem
Eliminating all quantifiers with Ferrante and Rackoff’s procedure
from a formula of size n takes space O(2cn) and time O(22

dn
).
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Quantifier Elimination

Presburger Arithmetic
See [Harrison] or [Enderton] under “Presburger”
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Presburger Arithmetic
Linear integer arithmetic: Z+ := (Z,+, 0, 1,≤)

A problem with Z+:

Z+ |= ∃x x + x = y ↔ ?

Fact Linear integer arithmetic does not have quantifier elimination

Presburger Arithmetic is linear integer arithmetic extended with
the unary functions “2 | .”, “3 | .”, . . .

(Alternative: “. = . (mod 2)”, “. = . (mod 3)”, . . . )

Notation: P := Z+ extended with “k | .”
For convenience: add constants c ∈ Z and multiplication with
constants c ∈ Z
Normal form of atoms:
0 ≤ c1 · x1 + . . . + cn · xn + c
k | c1 · x1 + . . . + cn · xn + c
where ci 6= 0 and k ≥ 1

Where necessary, atoms are put into normal form
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Presburger Arithmetic

Elimination of ¬:

Z+ |= ¬ s ≤ t ↔ t + 1 ≤ s

Z+ |= ¬ k | t ↔ k | t + 1 ∨ k | t + 2 ∨ · · · ∨ k | t + (k − 1)

Elimination of ¬ | expensive and not really necessary.
Can treat ¬ | like |
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Quantifier Elimination for P
Step 1

qe1ca(∃x F )
where F = A1 ∧ · · · ∧ Al

where all Ai are atoms in normal form which contain x

Step 1: Set all coeffs of x in F to 1 or -1:

1. Set all coeffs of x in F to the lcm m of all coeffs of x

2. Set all coeffs of x to 1 or -1 and add ∧m | x
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Quantifier Elimination for P
Step 1

qe1ca(∃x A1 ∧ · · · ∧ Al)

Step 1: Set all coeffs of x in F to 1 or -1
The details, in one step:

Let m be the (positive) lcm of all coeffs of x (eg lcm {−6, 9} = 18)
Let R be coeff 1(A1) ∧ · · · ∧ coeff 1(Al) ∧m | x (result)
where
coeff 1(0 ≤ c1 ·x1 + . . .+cn ·xn +c) = (0 ≤ c ′1 ·x1 + . . .+c ′n ·xn +c ′)
coeff 1(d | c1 ·x1 + . . .+ cn ·xn + c) = (d ′ | c ′1 ·x1 + . . .+ c ′n ·xn + c ′)
xk = x
m′ = m/|ck |
c ′i = m′ · ci if i 6= k
c ′k = if ck > 0 then 1 else − 1
c ′ = m′ · c
d ′ = m′ · d

Lemma P |= (∃x F )↔ (∃x R)
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Quantifier Elimination for P
Step 2

AL := set of all 0 ≤ x + t in R L := {−t | (0 ≤ x + t) ∈ AL}
AU := set of all 0 ≤ −x + t in R U := {t | (0 ≤ −x + t) ∈ AU}

D := the set of all d | t in R

m := the (pos.) lcm of {d | (d | t) ∈ D for some t}

The quantifier-free result:

R ′ := if L = ∅
then

∨m−1
i=0

∧
D[i/x ]

else
∨m−1

i=0

∨
l∈L R[l + i/x ]

Optimisation: use U instead of L

Lemma (Periodicity Lemma)

If A ∈ D, i.e. A = (d | x + t) and x /∈ fv(T ), and i ≡ j (mod d)
then P |= A[i/x ]↔ A[j/x ].
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