## Quantifier Elimination

## Helpful lemmas

Let $S$ be a set of sentences.
Lemma
$S \models F \quad$ iff $S \models \forall F$
Lemma
If $S \vDash F \leftrightarrow G$ then $S \models H[F] \leftrightarrow H[G]$,
i.e. one can replace a subformula $F$ of $H$ by $G$.

## Quantifier elimination

Definition
If $T \models F \leftrightarrow F^{\prime}$ we say that $F$ and $F^{\prime}$ are $T$-equivalent.

## Definition

A theory $T$ admits quantifier elimination if for every formula $F$ there is a quantifier-free $T$-equivalent formula $G$ such that $f v(G) \subseteq f v(F)$. We call $G$ a quantifier-free $T$-equivalent of $F$.

Examples

$$
\begin{aligned}
& \exists x \exists y(3 * x+5 * y=7) \leftrightarrow ? \\
& \forall y(x<y \wedge y<z) \leftrightarrow ? \\
& \exists y(x<y \wedge y<z) \leftrightarrow ?
\end{aligned}
$$

In linear real arithmetic: $\forall y(x<y \wedge y<z) \leftrightarrow$ ?

## Quantifier elimination

A quantifier-elimination procedure (QEP) for a theory $T$ and a set of formulas $\mathcal{F}$ is a function that computes for every $F \in \mathcal{F}$ a quantifier-free $T$-equivalent.

## Lemma

Let $T$ be a theory such that

- T has a QEP for all formulas and
- for all ground formulas $G, T \models G$ or $T \models \neg G$, and it is decidable which is the case.
Then $T$ is decidable and complete.


## Simplifying quantifier elimination: one $\exists$

Fact
If $T$ has a QEP for all $\exists x F$ where $F$ is quantifier-free, then $T$ has a QEP for all formulas.

Essence: It is sufficient to be able to eliminate a single $\exists$
Construction:
Given: a QEP qe1 for formulas of the form $\exists x F$ where $F$ is quantifier-free
Define: a QEP for all formulas
Method: Eliminate quantifiers bottom-up by qe1, use $\forall \equiv \neg \exists \neg$

## Simplifying quantifier elimination: $\exists x \bigwedge$ literals

Lemma
If $T$ has a QEP for all $\exists x F$ where $F$ is a conjunction of literals, all of which contain $x$, then $T$ has a QEP for all $\exists x F$ where $F$ is quantifier-free.

Construction:
Given: a QEP qe1c for formulas of the form $\exists x\left(L_{1} \wedge \cdots \wedge L_{n}\right)$ where each $L_{i}$ is a literal that contains $x$
Define: $q e 1(\exists x F)$ where $F$ is quantifier-free Method: DNF; miniscoping; qe1c

This is the end of the generic part of quantifier elimination.
The rest is theory specific.

## Eliminating " $\neg$ "

Motivation: $\neg x<y \leftrightarrow y<x \vee y=x$ for linear orderings
Assume that there is a computable function neg that maps every negated atom to a quantifier-free and negation-free $T$-equivalent formula.

## Lemma

If $T$ has a QEP for all $\exists x F$ where $F$ is a conjunction of atoms, all of which contain $x$, then $T$ has a $Q E P$ for all $\exists x F$ where $F$ is quantifier-free.
Construction:
Given: a QEP qe1ca for formulas of the form $\exists x\left(A_{1} \wedge \cdots \wedge A_{n}\right)$ where each atom $A_{i}$ contains $x$
Define: $q e 1(\exists x F)$ where $F$ quantifier-free Method: NNF; aneg; DNF; miniscoping; qe1ca

## Quantifier Elimination

## Dense Linear Orders Without Endpoints

## Dense Linear Orders Without Endpoints

$\Sigma=\{<,=\}$
Let DLO stand for "dense linear order without endpoints" and for the following set of axioms:

$$
\begin{aligned}
& \forall x \forall y \forall z(x<y \wedge y<z \rightarrow x<z) \\
& \forall x \neg(x<x) \\
& \forall x \forall y(x<y \vee x=y \vee y<x) \\
& \forall x \forall z(x<z \rightarrow \exists y(x<y \wedge y<z) \\
& \forall x \exists y x<y \\
& \forall x \exists y y<x
\end{aligned}
$$

Models of DLO?
Theorem
All countable DLOs are isomorphic.

## Quantifier elimination example

## Example

$D L O \models \exists y(x<y \wedge y<z) \leftrightarrow$

## Eliminiation of " $\neg$ "

Elimination of negative literals (function aneg):
$D L O \models \neg x=y \leftrightarrow x<y \vee y<x$
$D L O \models \neg x<y \leftrightarrow x=y \vee y<x$

## Quantifier elimination for conjunctions of atoms

QEP qe1ca $\left(\exists x\left(A_{1} \wedge \cdots \wedge A_{n}\right)\right.$ where $x$ occurs in all $A_{i}$ :

1. Eliminate " $=$ ": Drop all $A_{i}$ of the form $x=x$.

If some $A_{i}$ is of the form $x=y$ ( $x$ and $y$ different), eliminate $\exists x$ :

$$
\exists x(x=t \wedge F) \equiv F[t / x] \quad(x \text { does not occur in } t)
$$

Otherwise:
2. Eliminate $x<x$ : return $\perp$
3. Separate atoms into lower and upper bounds for $x$ and use

$$
D L O \models \exists x\left(\bigwedge_{i=1}^{m} I_{i}<x \wedge \bigwedge_{j=1}^{n} x<u_{j}\right) \leftrightarrow \bigwedge_{i=1}^{m} \bigwedge_{j=1}^{n} I_{i}<u_{j}
$$

Special case: $\bigwedge_{k=1}^{0} F_{k}=\top$
Examples
$\exists x\left(x<z \wedge y<x \wedge x<y^{\prime}\right) \leftrightarrow ?$
$\forall x(x<y) \leftrightarrow$ ?
$\exists x \exists y \exists z(x<y \wedge y<z \wedge z<x) \leftrightarrow ?$

## Complexity

## Quadratic blow-up with each elimination step

$\Rightarrow$ Eliminating all $\exists$ from

$$
\exists x_{1} \ldots \exists x_{m} F
$$

where $F$ has length $n$ needs $O(\quad)$, assuming $F$ is DNF.

## Consequences

- $C n(D L O)$ has quantifier elimination
- $C n(D L O)$ is decidable and complete
- All models of DLO (for example $(\mathbb{Q},<)$ and $(\mathbb{R},<)$ ) are elementarily equivalent: you cannot distinguish models of DLO by first-order formulas.


## Quantifier Elimination Linear real arithmetic

## Linear real arithmetic

$$
\mathcal{R}_{+}=(\mathbb{R}, 0,1,+,<,=), \quad R_{+}=\operatorname{Th}\left(\mathcal{R}_{+}\right)
$$

For convenience we allow the following additional function symbols:
For every $c \in \mathbb{Q}$ :

- $c$ is a constant symbol
- $c$., multiplication with $c$, is a unary function symbol

A term in normal form: $c_{1} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}+c$ where $c_{i} \neq 0, x_{i} \neq x_{j}$ if $i \neq j$.
Every atom $A$ is $R_{+}$-equivalent to an atom $0 \bowtie t$ in normal form (NF) where $\bowtie \in\{<,=\}$ and $t$ is in normal form.

An atom is solved for $x$ if it is of the form $x<t, x=t$ or $t<x$ where $x$ does not occur in $t$.
Any atom $A$ in normal form that contains $x$ can be transformed into an $R_{+}$-equivalent atom solved for $x$.
Function sol $(A)$ solves $A$ for $x$.

## Eliminiation of " $\neg$ "

Elimination of negative literals (function aneg):
$R_{+} \vDash \neg x=y \leftrightarrow x<y \vee y<x$
$R_{+} \models \neg x<y \leftrightarrow x=y \vee y<x$

## Fourier-Motzkin Elimination

QEP qe1ca $\left(\exists x\left(A_{1} \wedge \cdots \wedge A_{n}\right)\right.$, all $A_{i}$ in NF and contain $x$ :

1. Let $S=\left\{\operatorname{sol}_{x}\left(A_{1}\right), \ldots\right.$, sol $\left._{x}\left(A_{n}\right)\right\}$
2. Eliminate " $=$ ":

If $(x=t) \in S$ for some $t$, eliminate $\exists x$ :

$$
\exists x(x=t \wedge F) \equiv F[t / x] \quad(x \text { does not occur in } t)
$$

Otherwise return

$$
\bigwedge_{(I<x) \in S} \bigwedge_{(x<u) \in S} I<u
$$

Special case: empty $\bigwedge$ is $\top$
All returned formulas are implicitly put into NF.
Examples
$\exists x \exists y(3 x+5 y<7 \wedge 2 x-3 y<2) \leftrightarrow ?$
$\exists x \forall y(3 y \leq x \vee x \leq 2 y) \leftrightarrow$ ?

## Can DNF be avoided?

## Ferrante and Rackoff's theorem

Theorem
Let $F$ be quantifier-free and negation-free and assume all atoms that contain $x$ are solved for $x$. Let $S_{x}$ be the set of atoms in $F$ that contain $x$. Let $L=\left\{I \mid(I<x) \in S_{x}\right\}$, $U=\left\{u \mid(x<u) \in S_{x}\right\}, E=\left\{t \mid(x=t) \in S_{x}\right\}$. Then

$$
\begin{aligned}
R_{+} \models \exists x F \leftrightarrow & F[-\infty / x] \vee F[\infty / x] \vee \\
& \bigvee_{t \in E} F[t / x] \vee \bigvee_{I \in L} \bigvee_{u \in U} F[0.5(I+u) / x]
\end{aligned}
$$

(note: empty $\bigvee$ is $\perp$ ) where $F[-\infty / x](F[\infty / x])$ is the following transformation of all solved atoms in $F: \quad x<t \mapsto \top(\perp)$

$$
\begin{aligned}
& t<x \mapsto \perp(\top) \\
& x=t \mapsto \perp(\perp)
\end{aligned}
$$

Examples
$\exists x(y<x \wedge x<z) \leftrightarrow ?$
$\exists x x<y \leftrightarrow ?$

## Ferrante and Rackoff's procedure

Define $q e 1(\exists x F)$ :

1. Put $F$ into NNF, eliminate all negations, put all atoms into normal form, solve those atoms for $x$ that contain $x$.
2. Apply Ferrante and Rackoff's theorem.

Theorem
Eliminating all quantifiers with Ferrante and Rackoff's procedure from a formula of size $n$ takes space $O\left(2^{c n}\right)$ and time $O\left(2^{2^{d n}}\right)$.

# Quantifier Elimination Presburger Arithmetic 

See [Harrison] or [Enderton] under "Presburger"

## Presburger Arithmetic

Linear integer arithmetic: $\mathcal{Z}_{+}:=(\mathbb{Z},+, 0,1, \leq)$
A problem with $\mathcal{Z}_{+}$:

$$
\mathcal{Z}_{+} \vDash \exists x x+x=y \leftrightarrow ?
$$

Fact Linear integer arithmetic does not have quantifier elimination
Presburger Arithmetic is linear integer arithmetic extended with the unary functions " $2|. ", " 3| . ", \ldots$
(Alternative: ". = . $(\bmod 2) ", \quad " .=.(\bmod 3) ", \ldots)$
Notation: $\mathcal{P}:=\mathcal{Z}_{+}$extended with " $k \mid$."
For convenience: add constants $c \in \mathbb{Z}$ and multiplication with constants $c \in \mathbb{Z}$

Normal form of atoms:
$0 \leq c_{1} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}+c$
$k \mid c_{1} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}+c$
where $c_{i} \neq 0$ and $k \geq 1$
Where necessary, atoms are put into normal form

## Presburger Arithmetic

Elimination of $\neg$ :
$\mathcal{Z}_{+} \mid=\neg s \leq t \leftrightarrow t+1 \leq s$
$\mathcal{Z}_{+}|=\neg k| t \leftrightarrow k|t+1 \vee k| t+2 \vee \cdots \vee k \mid t+(k-1)$
Elimination of $\neg \mid$ expensive and not really necessary. Can treat $\neg \mid$ like |

## Quantifier Elimination for $\mathcal{P}$

Step 1

```
\(q e 1 c a(\exists x F)\)
where \(F=A_{1} \wedge \cdots \wedge A_{l}\)
```

where all $A_{i}$ are atoms in normal form which contain $x$
Step 1: Set all coeffs of $x$ in $F$ to 1 or -1 :

1. Set all coeffs of $x$ in $F$ to the Icm $m$ of all coeffs of $x$
2. Set all coeffs of $x$ to 1 or -1 and add $\wedge m \mid x$

## Quantifier Elimination for $\mathcal{P}$

## Step 1

$q e 1 c a\left(\exists x A_{1} \wedge \cdots \wedge A_{l}\right)$
Step 1: Set all coeffs of $x$ in $F$ to 1 or -1
The details, in one step:
Let $m$ be the (positive) lcm of all coeffs of $x(\operatorname{eg~lcm~}\{-6,9\}=18)$ Let $R$ be coeff $1\left(A_{1}\right) \wedge \cdots \wedge$ coeff $1\left(A_{l}\right) \wedge m \mid x($ result $)$ where coeff $1\left(0 \leq c_{1} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}+c\right)=\left(0 \leq c_{1}^{\prime} \cdot x_{1}+\ldots+c_{n}^{\prime} \cdot x_{n}+c^{\prime}\right)$
$\operatorname{coeff} 1\left(d \mid c_{1} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}+c\right)=\left(d^{\prime} \mid c_{1}^{\prime} \cdot x_{1}+\ldots+c_{n}^{\prime} \cdot x_{n}+c^{\prime}\right)$ $x_{k}=x$
$m^{\prime}=m /\left|c_{k}\right|$
$c_{i}^{\prime}=m^{\prime} \cdot c_{i}$ if $i \neq k$
$c_{k}^{\prime}=$ if $c_{k}>0$ then 1 else -1
$c^{\prime}=m^{\prime} \cdot c$
$d^{\prime}=m^{\prime} \cdot d$
Lemma $\mathcal{P} \models(\exists x F) \leftrightarrow(\exists x R)$

## Quantifier Elimination for $\mathcal{P}$

Step 2

$$
\begin{array}{ll}
A_{L}:=\text { set of all } 0 \leq x+t \text { in } R & L:=\left\{-t \mid(0 \leq x+t) \in A_{L}\right\} \\
A_{U}:=\text { set of all } 0 \leq-x+t \text { in } R & U:=\left\{t \mid(0 \leq-x+t) \in A_{U}\right\}
\end{array}
$$

$D:=$ the set of all $d \mid t$ in $R$ $m:=$ the (pos.) Icm of $\{d \mid(d \mid t) \in D$ for some $t\}$
The quantifier-free result:

$$
\begin{aligned}
R^{\prime}:= & \text { if } L=\emptyset \\
& \text { then } \bigvee_{i=0}^{m-1} \bigwedge D[i / x] \\
& \text { else } \bigvee_{i=0}^{m-1} \bigvee_{I \in L} R[I+i / x]
\end{aligned}
$$

Optimisation: use $U$ instead of $L$
Lemma (Periodicity Lemma)
If $A \in D$, i.e. $A=(d \mid x+t)$ and $x \notin f v(T)$, and $i \equiv j(\bmod d)$ then $\mathcal{P} \models A[i / x] \leftrightarrow A[j / x]$.

