
Sequent Calculus
Propositional Logic

1

Sequent Calculus

Invented by Gerhard Gentzen in 1935. Birth of proof theory.

Proof rules
S1 . . . Sn

S

where S1, . . .Sn and S are sequents

Γ⇒ ∆

where Γ and ∆ are finite multisets of formulas.
(Multiset = set with possibly repeated elements)
(Could use sets instead of multisets
but this causes some complications)

Important: ⇒ is just a separator
Formally, a sequent is a pair of finite multisets.

Intuition: Γ⇒ ∆ is provable iff
∧

Γ→
∨

∆ is a tautology

2

Sequents: Notation

I We use set notation for multisets, eg {A,B → C ,A}
I Drop {}: F1, . . . ,Fm ⇒ G1, . . .Gn

I F , Γ abbreviates {F} ∪ Γ (similarly for ∆)

I Γ1, Γ2 abbreviates Γ1 ∪ Γ2 (similarly for ∆)

3

Sequent Calculus rules

Intuition: read backwards as proof search rules

⊥, Γ⇒ ∆
⊥L

A, Γ⇒ A,∆
Ax

Γ⇒ F ,∆

¬F , Γ⇒ ∆
¬L

F , Γ⇒ ∆

Γ⇒ ¬F ,∆
¬R

F ,G , Γ⇒ ∆

F ∧ G , Γ⇒ ∆
∧L

Γ⇒ F ,∆ Γ⇒ G ,∆

Γ⇒ F ∧ G ,∆
∧R

F , Γ⇒ ∆ G , Γ⇒ ∆

F ∨ G , Γ⇒ ∆
∨L

Γ⇒ F ,G ,∆

Γ⇒ F ∨ G ,∆
∨R

Γ⇒ F ,∆ G , Γ⇒ ∆

F → G , Γ⇒ ∆
→L

F , Γ⇒ G ,∆

Γ⇒ F → G ,∆
→R

Every rule decomposes its principal formula

4

Example

P,Q ∨ ¬R ⇒ P,Q
Ax

R,Q ⇒ P,Q
Ax

R ⇒ R,P,Q
Ax

R,¬R ⇒ P,Q
¬L

R,Q ∨ ¬R ⇒ P,Q
∨L

P ∨ R,Q ∨ ¬R ⇒ P,Q
∨L

P ∨ R,Q ∨ ¬R ⇒ P ∨ Q
∨R

(P ∨ R) ∧ (Q ∨ ¬R)⇒ P ∨ Q
∧L

⇒ (P ∨ R) ∧ (Q ∨ ¬R)→ P ∨ Q
→R

F , Γ⇒ G ,∆

Γ⇒ F → G ,∆
→R

F ,G , Γ⇒ ∆

F ∧ G , Γ⇒ ∆
∧L

Γ⇒ F ,G ,∆

Γ⇒ F ∨ G ,∆
∨R

F , Γ⇒ ∆ G , Γ⇒ ∆

F ∨ G , Γ⇒ ∆
∨L

A, Γ⇒ A,∆
Ax

Γ⇒ F ,∆

¬F , Γ⇒ ∆
¬L

5

Proof search properties

I For every logical operator (¬ etc)
there is one left and one right rule

I Every formula in the premise of a rule
is a subformula of the conclusion of the rule.
This is called the subformula property.
⇒ no need to guess anything when applying a rule backward

I Backward rule application terminates
because one operator is removed in each step.

6

Instances of rules

Definition
An instance of a rule is the result of
replacing Γ and ∆ by multisets of concrete formulas
and F and G by concrete formulas.

Example

⇒ P ∧ Q,A,B

¬(P ∧ Q)⇒ A,B

is an instance of
Γ⇒ F ,∆

¬F , Γ⇒ ∆

setting F := P ∧ Q, Γ := ∅, ∆ := {A,B}

7

Proof trees

Definition (Proof tree)

A proof tree is a tree whose nodes are sequents and where each
parent-children fragment

S1 . . . Sn
S

is an instance of a proof rule.

(⇒ all leaves must be instances of axioms)

A sequent S is provable if there is a proof tree with root S .
Then we write `G S .

8

Proof trees

An alternative inductive definition of proof trees:

Definition (Proof tree)

If
S1 . . . Sn

S

is an instance of a proof rule
and there are proof trees T1, . . .Tn with roots S1, . . . ,Sn then

T1 . . . Tn

S

is a proof tree (with root S).

9

What does Γ⇒ ∆ “mean”?

Definition

|Γ⇒ ∆| = (
∧

Γ→
∨

∆)

Example: |{A,B} ⇒ {P,Q}| = (A ∧ B → P ∨ Q)

Remember:
∧
∅ = > and

∨
∅ = ⊥

Aim: `G S iff |S | is a tautology

Lemma (Rule Equivalence)

For every rule
S1 . . . Sn

S

I |S | ≡ |S1| ∧ . . . ∧ |Sn|
I |S | is a tautology iff all Si are tautologies

10

Theorem (Soundness of `G)

If `G S then |= |S |.
Proof by induction on the height of the proof tree for `G S .
Tree must end in rule instance

S1 . . . Sn
S

IH: |= Si for all i .
Thus |= |S | by the previous lemma.

11

Proof Search and Completeness

12

Proof search = growing a proof tree from the root

I Start from an initial sequent S0

I At each stage we have some potentially partial proof tree
with unproved leaves

I In each step, pick some unproved leaf S and some rule
instance

S1 . . . Sn
S

and extend the tree with that rule instance
(creating new unproved leaves S1, . . . ,Sn)

13

Proof search termintes if . . .

I there are no more unproved leaves — success

I there is some unproved leaf where no rule applies — failure
⇒ that leaf is of the form

P1, . . . ,Pk ⇒ Q1, . . . ,Ql

where all Pi and Qj are atoms, no Pi = Qj and no Pi = ⊥

Example (failed proof)

P ⇒ P
Ax

Q ⇒ P
P ∨ Q ⇒ P

∨L
P ⇒ Q Q ⇒ Q

Ax

P ∨ Q ⇒ Q
∨L

P ∨ Q ⇒ P ∧ Q
∧R

Falsifying assignments?

14

Proof search = Counterexample search

Can view sequent calculus as a search for a falsifying assignment
for |Γ⇒ ∆|:

Make Γ true and ∆ false

Some examples:
F ,G , Γ⇒ ∆

F ∧ G , Γ⇒ ∆
∧L

To make F ∧ G true, make both F and G true

Γ⇒ F ,∆ Γ⇒ G ,∆

Γ⇒ F ∧ G ,∆
∧R

To make F ∧ G false, make F or G false

15

Lemma (Search Equivalence)

At each stage of the search process,
if S1, . . . ,Sk are the unproved leaves, then |S0| ≡ |S1| ∧ . . . ∧ |Sk |
Proof by induction on the number of search steps.
Initially trivially true (base case).
When applying a rule instance

U1 . . . Un

Si

we have
|S0| ≡ |S1| ∧ . . . ∧ |Si | ∧ . . . ∧ |Sk | (by IH)

≡ |S1| ∧ · · · ∧ |Si−1| ∧ |U1| ∧ · · · ∧ |Un| ∧ |Si+1| ∧ . . . ∧ |Sk |
by Lemma Rule Equivalence.

16

Lemma
If proof search fails, |S0| is not a tautology.

Proof If proof search fails, there is some unproved leaf S =

P1, . . . ,Pk ⇒ Q1, . . . ,Ql

where no Pi = Qj and no Pi = ⊥.
This sequent can be falsified by setting A(Pi) := 1 (for all i)
and A(Qj) := 0 (for all j) and all other atoms to 0 or 1.
Thus A(|S |) = 0 and hence A(S0) = 0 by Lemma Search
Equivalence. �

Because of soundness of `G :

Corollary

Starting with some fixed S0, proof search cannot both fail (for
some choices) and succeed (for other choices).

⇒ no need for backtracking upon failure!

17

Lemma
Proof search terminates.

Proof In every step, one logical operator is removed.
⇒ size of sequent decreases by 1
⇒ Depth of proof tree is bounded by size of S0

but breadth only bounded by 2size of S0

Corollary

Proof search is a decision procedure: it either succeeds or fails.

Theorem (Completeness)

If |= |S | then `G S .

Proof by contraposition: if not `G S then proof seach must fail.
Therefore 6|= |S |.

18

Multisets versus sets

Termination only because of multisets.
With sets, the principal formula may get duplicated:

Γ⇒ F ,∆

¬F , Γ⇒ ∆
¬L Γ:={¬F}

¬F ⇒ F ,∆

¬F ⇒ ∆

An alternative formulation of the set version:

Γ\{¬F} ⇒ F ,∆

¬F , Γ⇒ ∆

Gentzen used sequences (hence “sequent calculus”)

19

Admissible Rules and Cut Elimination

20

Admissible rules

Definition
A rule

S1 . . . Sn
S

is admissible if `G S1, . . . , `G Sn together imply `G S .

⇒ Admissible rules can be used in proofs like normal rules

Admissibility is often proved by induction.

Aim: prove admissibility of

Γ⇒ F ,∆ Γ,F ⇒ ∆

Γ⇒ ∆
cut

This is Gentzen’s Hauptsatz. Many applications.

21

Lemma (Non-atomic Ax)

The non-atomic axiom rule

F , Γ⇒ F ,∆ Ax ′

is admissible, i.e. `G F , Γ⇒ F ,∆.

Proof idea: decompose F , then use Ax .
Formally: proof by induction on (the structure of) F .
Case F1 → F2:

F1, Γ⇒ F1,F2,∆
IH

F1,F2, Γ⇒ F2,∆
IH

F1,F1 → F2 ⇒ F2,∆
→L

F1 → F2, Γ⇒ F1 → F2,∆
→R

The other cases are analogous.

22

Semantic proofs of admissibility

Admissibility of
S1 . . . Sn

S

can also be shown semantically (using `G = |=)
by proving that |= |S1|, . . . , |= |Sn| together imply |= |S |.

Semantic proofs are much simpler
and much less informative than syntactic proofs.
Syntactic proofs show how to eliminate admissible rules.
For examle, the admissibility proof of Ax ′ is a recursive procedure
that decomposes F . In particular it tells us that the elimination of
Ax ′ generates a proof of size O(

size of F

).

We focuses on proof theory

23

Weakening

Notation:
Γ⇒n ∆ means that there is a proof tree for Γ⇒ ∆ of depth ≤ n.

Lemma (Weakening)

If Γ⇒n ∆ then Γ′, Γ⇒n ∆′,∆.

Proof idea: take proof tree for Γ⇒ ∆
and add Γ′ everywhere on the left and ∆′ everywhere on the right.

General principal: transform proof trees

Notation:
D : Γ⇒ ∆ means that D is a proof tree for Γ⇒ ∆

24

Inversion rules

Lemma (Inversion rules)

∧L−1 If F ∧ G , Γ⇒n ∆ then F ,G , Γ⇒n ∆

∨R−1 If Γ⇒n F ∨ G ,∆ then Γ⇒n F ,G ,∆

∧R−1 If Γ⇒n F1 ∧ F2,∆ then Γ⇒n Fi ,∆ (i = 1, 2)

∨L−1 If F1 ∨ F2, Γ⇒n ∆ then Fi , Γ⇒n ∆ (i = 1, 2)

→R−1 If Γ⇒n F → G ,∆ then F , Γ⇒n G ,∆

→L−1 If F → G , Γ⇒n ∆ then Γ⇒n F ,∆ and G , Γ⇒n ∆

F ,G , Γ⇒ ∆

F ∧ G , Γ⇒ ∆
∧L

Γ⇒ F ,G ,∆

Γ⇒ F ∨ G ,∆
∨R

Γ⇒ F ,∆ Γ⇒ G ,∆

Γ⇒ F ∧ G ,∆
∧R

F , Γ⇒ ∆ G , Γ⇒ ∆

F ∨ G , Γ⇒ ∆
∨L

F , Γ⇒ G ,∆

Γ⇒ F → G ,∆
→R

Γ⇒ F ,∆ G , Γ⇒ ∆

F → G , Γ⇒ ∆
→L

Negation?

25

Proof of →L−1

If F → G , Γ⇒n ∆ then Γ⇒n F ,∆ and G , Γ⇒n ∆

Proof by induction on n. Base case trivial because ⇒0 impossible.
Assume D : F → G , Γ⇒n+1 ∆
Let r be the last rule in D. Proof by cases.

Case r = Ax (r = ⊥L similar)

⇒ D =
F → G ,A, Γ′ ⇒1 A,∆′

where Γ = A, Γ′ and ∆ = A,∆′

⇒ Γ⇒1 F ,∆ and G , Γ⇒1 ∆

Otherwise there are two subcases.

1. F → G is the principal formula

⇒ D =
Γ⇒n+1 F ,∆ G , Γ⇒n ∆

F → G , Γ⇒n ∆
→L

26

Proof of →L−1

If F → G , Γ⇒n ∆ then Γ⇒n F ,∆ and G , Γ⇒n ∆

2. F → G is not the principal formula
Cases r :
Case r = ∨R

D =
F → G , Γ⇒n+1 H1,H2,∆′

F → G , Γ⇒n H1 ∨ H2,∆′

IH: Γ⇒n F ,H1,H2,∆′

Γ⇒n+1 F ,∆
∨R

and G , Γ⇒n H1,H2,∆′

G , Γ⇒n+1 ∆
∨R

Similar for all other rules because F → G is not principal

27

Contraction
F ,F , Γ⇒ ∆

F , Γ⇒ ∆

Γ⇒ F ,F ,∆

Γ⇒ F ,∆

Lemma (Contraction)

(i) If F ,F , Γ⇒n ∆ then F , Γ⇒n ∆

(ii) If Γ⇒n F ,F ,∆ then Γ⇒n F ,∆

Proof by induction on n. Base case trivial. Step: focus on (i).
Assume D : F ,F , Γ⇒n+1 ∆
Let r be the last rule in D. Proof by cases.

Case r =→L (other rules similar)
Two subcases:
1. F is not principal formula

⇒ D =
F ,F , Γ′ ⇒n G ,∆ F ,F ,H, Γ′ ⇒n ∆

F ,F ,G → H, Γ′ ⇒n+1 ∆
→L

IH: F , Γ′ ⇒n G ,∆ F ,H, Γ′ ⇒n ∆

F ,G → H, Γ′ ⇒ ∆
→L

28

Contraction

2. F is principal formula

⇒ D =
G → H, Γ⇒n G ,∆ H,G → H, Γ⇒n ∆

G → H,G → H, Γ⇒n+1 ∆
→L

29

No ⊥R

Lemma
If `G Γ⇒ ∆ then `G Γ⇒ ∆− {⊥}
Proof idea:

I no rule expects ⊥ on the right

I no rule can move ⊥ from right to left.

⇒ no rule is disabled by removing ⊥ on the right
⇒ the same proof rules that prove Γ⇒ ∆ also prove
Γ⇒ ∆− {⊥}.
Formally: induction on the height of the proof tree for Γ⇒ ∆
= recursive transformation of proof tree.

30

Atomic cut

Lemma (Atomic cut)

If D1 : Γ⇒ A,∆ and D2 : A, Γ⇒ ∆ then `G Γ⇒ ∆

Proof by induction on the depth of D1.

31

Cut

Theorem (Cut)

If D1 : Γ⇒ F ,∆ and D2 : F , Γ⇒ ∆ then `G Γ⇒ ∆

Proof by induction on F .

32

