Sequent Calculus Propositional Logic

Sequent Calculus

Invented by Gerhard Gentzen in 1935. Birth of proof theory.
Proof rules

$$
\begin{array}{ccc}
S_{1} \ldots & S_{n} \\
\hline & S
\end{array}
$$

where $S_{1}, \ldots S_{n}$ and S are sequents

$$
\Gamma \Rightarrow \Delta
$$

where Γ and Δ are finite multisets of formulas.
(Multiset $=$ set with possibly repeated elements)
(Could use sets instead of multisets
but this causes some complications)
Important: \Rightarrow is just a separator
Formally, a sequent is a pair of finite multisets.
Intuition: $\Gamma \Rightarrow \Delta$ is provable iff $\wedge \Gamma \rightarrow \bigvee \Delta$ is a tautology

Sequents: Notation

- We use set notation for multisets, eg $\{A, B \rightarrow C, A\}$
- Drop $\left\}: F_{1}, \ldots, F_{m} \Rightarrow G_{1}, \ldots G_{n}\right.$
- F, Γ abbreviates $\{F\} \cup \Gamma$ (similarly for $\Delta)$
- Γ_{1}, Γ_{2} abbreviates $\Gamma_{1} \cup \Gamma_{2}($ similarly for $\Delta)$

Sequent Calculus rules

Intuition: read backwards as proof search rules

$$
\begin{array}{ll}
\overline{\perp, \Gamma \Rightarrow \Delta} \perp L & \overline{A, \Gamma \Rightarrow A, \Delta} A x \\
\frac{\Gamma \Rightarrow F, \Delta}{\neg F, \Gamma \Rightarrow \Delta} \neg L & \frac{F, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \neg F, \Delta} \neg R \\
\frac{F, G, \Gamma \Rightarrow \Delta}{\digamma \wedge G, \Gamma \Rightarrow \Delta} \wedge L & \frac{\Gamma \Rightarrow F, \Delta\ulcorner\Rightarrow G, \Delta}{\Gamma \Rightarrow F \wedge G, \Delta} \wedge R \\
\frac{F, \Gamma \Rightarrow \Delta \quad G, \Gamma \Rightarrow \Delta}{F \vee G, \Gamma \Rightarrow \Delta} \vee L & \frac{\Gamma \Rightarrow F, G, \Delta}{\Gamma \Rightarrow F \vee G, \Delta} \vee R \\
\frac{\Gamma \Rightarrow F, \Delta \quad G, \Gamma \Rightarrow \Delta}{F \rightarrow G, \Gamma \Rightarrow \Delta} \rightarrow L & \frac{F, \Gamma \Rightarrow G, \Delta}{\Gamma \Rightarrow F \rightarrow G, \Delta} \rightarrow R
\end{array}
$$

Every rule decomposes its principal formula

Example

$$
\begin{aligned}
& \frac{F, \Gamma \Rightarrow G, \Delta}{\Gamma \Rightarrow F \rightarrow G, \Delta} \rightarrow R \frac{F, G, \Gamma \Rightarrow \Delta}{F \wedge G, \Gamma \Rightarrow \Delta} \wedge L \frac{\Gamma \Rightarrow F, G, \Delta}{\Gamma \Rightarrow F \vee G, \Delta}
\end{aligned}
$$

Proof search properties

- For every logical operator (\neg etc) there is one left and one right rule
- Every formula in the premise of a rule is a subformula of the conclusion of the rule. This is called the subformula property. \Rightarrow no need to guess anything when applying a rule backward
- Backward rule application terminates because one operator is removed in each step.

Instances of rules

Definition
An instance of a rule is the result of replacing Γ and Δ by multisets of concrete formulas and F and G by concrete formulas.

Example

$$
\frac{\Rightarrow P \wedge Q, A, B}{\neg(P \wedge Q) \Rightarrow A, B}
$$

is an instance of

$$
\frac{\Gamma \Rightarrow F, \Delta}{\neg F, \Gamma \Rightarrow \Delta}
$$

setting $F:=P \wedge Q, \Gamma:=\emptyset, \Delta:=\{A, B\}$

Proof trees

Definition (Proof tree)
A proof tree is a tree whose nodes are sequents and where each parent-children fragment

$$
\begin{array}{lll}
S_{1} \ldots S_{n} \\
S
\end{array}
$$

is an instance of a proof rule.
(\Rightarrow all leaves must be instances of axioms)
A sequent S is provable if there is a proof tree with root S. Then we write $\vdash_{G} S$.

Proof trees

An alternative inductive definition of proof trees:
Definition (Proof tree)
If

is an instance of a proof rule and there are proof trees $T_{1}, \ldots T_{n}$ with roots S_{1}, \ldots, S_{n} then

$$
\begin{array}{lll}
T_{1} \ldots T_{n} \\
S
\end{array}
$$

is a proof tree (with root S).

What does $\Gamma \Rightarrow \Delta$ "mean"?

Definition

$$
|\Gamma \Rightarrow \Delta|=(\bigwedge\ulcorner\rightarrow \bigvee \Delta)
$$

Example: $|\{A, B\} \Rightarrow\{P, Q\}|=(A \wedge B \rightarrow P \vee Q)$
Remember: $\wedge \emptyset=T$ and $\bigvee \emptyset=\perp$
Aim: $\vdash_{G} S$ iff $|S|$ is a tautology
Lemma (Rule Equivalence)
For every rule $\frac{S_{1} \ldots S_{n}}{S}$

- $|S| \equiv\left|S_{1}\right| \wedge \ldots \wedge\left|S_{n}\right|$
- $|S|$ is a tautology iff all S_{i} are tautologies

Theorem (Soundness of \vdash_{G})
If $\vdash_{G} S$ then $\vDash|S|$.
Proof by induction on the height of the proof tree for $\vdash_{G} S$.
Tree must end in rule instance

$\mathrm{IH}: \mid=S_{i}$ for all i.
Thus $\models|S|$ by the previous lemma.

Proof Search and Completeness

Proof search $=$ growing a proof tree from the root

- Start from an initial sequent S_{0}
- At each stage we have some potentially partial proof tree with unproved leaves
- In each step, pick some unproved leaf S and some rule instance

$$
\begin{array}{lll}
S_{1} & \ldots & S_{n} \\
\hline & S
\end{array}
$$

and extend the tree with that rule instance (creating new unproved leaves S_{1}, \ldots, S_{n})

Proof search termintes if ...

- there are no more unproved leaves - success
- there is some unproved leaf where no rule applies - failure \Rightarrow that leaf is of the form

$$
P_{1}, \ldots, P_{k} \Rightarrow Q_{1}, \ldots, Q_{l}
$$

where all P_{i} and Q_{j} are atoms, no $P_{i}=Q_{j}$ and no $P_{i}=\perp$
Example (failed proof)

$$
\frac{\overline{P \Rightarrow P} A x \quad Q \Rightarrow P}{\frac{P \vee Q \Rightarrow P}{P \vee L} \frac{P \Rightarrow Q \quad \overline{Q \Rightarrow Q}}{P \vee Q \Rightarrow P \wedge L}}
$$

Falsifying assignments?

Proof search $=$ Counterexample search

Can view sequent calculus as a search for a falsifying assignment for $|\Gamma \Rightarrow \Delta|$:

Make Γ true and Δ false
Some examples:

$$
\frac{F, G, \Gamma \Rightarrow \Delta}{F \wedge G, \Gamma \Rightarrow \Delta} \wedge L
$$

To make $F \wedge G$ true, make both F and G true

$$
\frac{\Gamma \Rightarrow F, \Delta \quad \Gamma \Rightarrow G, \Delta}{\Gamma \Rightarrow F \wedge G, \Delta} \wedge R
$$

To make $F \wedge G$ false, make F or G false

Lemma (Search Equivalence)

At each stage of the search process,
if S_{1}, \ldots, S_{k} are the unproved leaves, then $\left|S_{0}\right| \equiv\left|S_{1}\right| \wedge \ldots \wedge\left|S_{k}\right|$
Proof by induction on the number of search steps.
Initially trivially true (base case).
When applying a rule instance

$$
\begin{array}{lll}
U_{1} \quad \ldots & U_{n} \\
\hline S_{i}
\end{array}
$$

we have

$$
\begin{aligned}
&\left|S_{0}\right| \equiv\left|S_{1}\right| \wedge \ldots \wedge\left|S_{i}\right| \wedge \ldots \wedge\left|S_{k}\right| \\
& \equiv\left|S_{1}\right| \wedge \ldots \wedge\left|S_{i-1}\right| \wedge\left|U_{1}\right| \wedge \ldots \wedge\left|U_{n}\right| \wedge\left|S_{i+1}\right| \wedge \ldots \wedge\left|S_{k}\right| \\
& \text { by Lemma Rule Equivalence. }
\end{aligned}
$$

Lemma

If proof search fails, $\left|S_{0}\right|$ is not a tautology.
Proof If proof search fails, there is some unproved leaf $S=$

$$
P_{1}, \ldots, P_{k} \Rightarrow Q_{1}, \ldots, Q_{l}
$$

where no $P_{i}=Q_{j}$ and no $P_{i}=\perp$.
This sequent can be falsified by setting $\mathcal{A}\left(P_{i}\right):=1$ (for all i) and $\mathcal{A}\left(Q_{j}\right):=0$ (for all j) and all other atoms to 0 or 1 .
Thus $\mathcal{A}(|S|)=0$ and hence $\mathcal{A}\left(S_{0}\right)=0$ by Lemma Search
Equivalence.
Because of soundness of \vdash_{G} :

Corollary

Starting with some fixed S_{0}, proof search cannot both fail (for some choices) and succeed (for other choices).
\Rightarrow no need for backtracking upon failure!

Lemma

Proof search terminates.
Proof In every step, one logical operator is removed.
\Rightarrow size of sequent decreases by 1
\Rightarrow Depth of proof tree is bounded by size of S_{0} but breadth only bounded by $2^{\text {size of } S_{0}}$

Corollary
Proof search is a decision procedure: it either succeeds or fails.
Theorem (Completeness)
If $\vDash|S|$ then $\vdash_{G} S$.
Proof by contraposition: if not $\vdash_{G} S$ then proof seach must fail. Therefore $\not \vDash|S|$.

Multisets versus sets

Termination only because of multisets.
With sets, the principal formula may get duplicated:

$$
\frac{\Gamma \Rightarrow F, \Delta}{\neg F, \Gamma \Rightarrow \Delta} \neg L \quad \stackrel{\Gamma:=\{\neg F\}}{\sim \sim} \quad \frac{\neg F \Rightarrow F, \Delta}{\neg F \Rightarrow \Delta}
$$

An alternative formulation of the set version:

$$
\frac{\Gamma \backslash\{\neg F\} \Rightarrow F, \Delta}{\neg F, \Gamma \Rightarrow \Delta}
$$

Gentzen used sequences (hence "sequent calculus")

Admissible Rules and Cut Elimination

Admissible rules

Definition

A rule

$$
\begin{array}{lll}
S_{1} \ldots & S_{n} \\
\hline & S
\end{array}
$$

is admissible if $\vdash_{G} S_{1}, \ldots, \vdash_{G} S_{n}$ together imply $\vdash_{G} S$.
\Rightarrow Admissible rules can be used in proofs like normal rules
Admissibility is often proved by induction.
Aim: prove admissibility of

$$
\frac{\Gamma \Rightarrow F, \Delta \quad \Gamma, F \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} c u t
$$

This is Gentzen's Hauptsatz. Many applications.

Lemma (Non-atomic Ax)

The non-atomic axiom rule

$$
\overline{F, \Gamma \Rightarrow F, \Delta} A x^{\prime}
$$

is admissible, i.e. $\vdash_{G} F, \Gamma \Rightarrow F, \Delta$.
Proof idea: decompose F, then use $A x$.
Formally: proof by induction on (the structure of) F.
Case $F_{1} \rightarrow F_{2}$:

$$
\frac{\overline{F_{1}, \Gamma \Rightarrow F_{1}, F_{2}, \Delta} I H \quad \overline{F_{1}, F_{2}, \Gamma \Rightarrow F_{2}, \Delta}}{} \rightarrow L
$$

The other cases are analogous.

Semantic proofs of admissibility

Admissibility of

$$
\begin{array}{lll}
S_{1} \ldots & S_{n} \\
\hline & S
\end{array}
$$

can also be shown semantically (using $\vdash_{G}=\models$) by proving that $\vDash\left|S_{1}\right|, \ldots, \vDash\left|S_{n}\right|$ together imply $\vDash|S|$.

Semantic proofs are much simpler and much less informative than syntactic proofs. Syntactic proofs show how to eliminate admissible rules. For examle, the admissibility proof of $A x^{\prime}$ is a recursive procedure that decomposes F. In particular it tells us that the elimination of $A x^{\prime}$ generates a proof of size $O(\quad)$.

We focuses on proof theory

Weakening

Notation:
$\Gamma \Rightarrow_{n} \Delta$ means that there is a proof tree for $\Gamma \Rightarrow \Delta$ of depth $\leq n$.

Lemma (Weakening)
If $\Gamma \Rightarrow_{n} \Delta$ then $\Gamma^{\prime}, \Gamma \Rightarrow_{n} \Delta^{\prime}, \Delta$.
Proof idea: take proof tree for $\Gamma \Rightarrow \Delta$ and add Γ^{\prime} everywhere on the left and Δ^{\prime} everywhere on the right.

General principal: transform proof trees
Notation:
$D: \Gamma \Rightarrow \Delta$ means that D is a proof tree for $\Gamma \Rightarrow \Delta$

Inversion rules

Lemma (Inversion rules)

$$
\begin{aligned}
& \wedge L^{-1} \text { If } F \wedge G, \Gamma \Rightarrow_{n} \Delta \text { then } F, G, \Gamma \Rightarrow_{n} \Delta \\
& \vee R^{-1} \text { If } \Gamma \Rightarrow_{n} F \vee G, \Delta \text { then } \Gamma \Rightarrow_{n} F, G, \Delta \\
& \wedge R^{-1} \text { If } \Gamma \Rightarrow_{n} F_{1} \wedge F_{2}, \Delta \text { then } \Gamma \Rightarrow_{n} F_{i}, \Delta(i=1,2) \\
& \vee L^{-1} \text { If } F_{1} \vee F 2, \Gamma \Rightarrow_{n} \Delta \text { then } F_{i}, \Gamma \Rightarrow_{n} \Delta(i=1,2) \\
& \rightarrow R^{-1} \text { If } \Gamma \Rightarrow_{n} F \rightarrow G, \Delta \text { then } F, \Gamma \Rightarrow_{n} G, \Delta \\
& \rightarrow L^{-1} \text { If } F \rightarrow G, \Gamma \Rightarrow_{n} \Delta \text { then } \Gamma \Rightarrow_{n} F, \Delta \text { and } G, \Gamma \Rightarrow_{n} \Delta
\end{aligned}
$$

$$
\frac{F, G, \Gamma \Rightarrow \Delta}{F \wedge G, \Gamma \Rightarrow \Delta} \wedge L \frac{\Gamma \Rightarrow F, G, \Delta}{\Gamma \Rightarrow F \vee G, \Delta} \vee R \frac{\Gamma \Rightarrow F, \Delta \Gamma \Rightarrow}{\Gamma \Rightarrow F \wedge G}
$$

Negation?

Proof of $\rightarrow L^{-1}$

If $F \rightarrow G, \Gamma \Rightarrow_{n} \Delta$ then $\Gamma \Rightarrow_{n} F, \Delta$ and $G, \Gamma \Rightarrow_{n} \Delta$
Proof by induction on n. Base case trivial because \Rightarrow_{0} impossible. Assume $D: F \rightarrow G, \Gamma \Rightarrow_{n+1} \Delta$ Let r be the last rule in D. Proof by cases.

Case $r=A x(r=\perp L$ similar $)$
$\Rightarrow D=\overline{F \rightarrow G, A, \Gamma^{\prime} \Rightarrow_{1} A, \Delta^{\prime}}$ where $\Gamma=A, \Gamma^{\prime}$ and $\Delta=A, \Delta^{\prime}$
$\Rightarrow \overline{\Gamma \Rightarrow_{1} F, \Delta}$ and $\overline{G, \Gamma \Rightarrow_{1} \Delta}$
Otherwise there are two subcases.

1. $F \rightarrow G$ is the principal formula
$\Rightarrow D=\frac{\Gamma \Rightarrow_{n+1} F, \Delta \quad G, \Gamma \Rightarrow_{n} \Delta}{F \rightarrow G, \Gamma \Rightarrow_{n} \Delta} \rightarrow L$

Proof of $\rightarrow L^{-1}$

If $F \rightarrow G, \Gamma \Rightarrow_{n} \Delta$ then $\Gamma \Rightarrow_{n} F, \Delta$ and $G, \Gamma \Rightarrow_{n} \Delta$
2. $F \rightarrow G$ is not the principal formula

Cases r :
Case $r=\vee R$

$$
D=\frac{F \rightarrow G, \Gamma \Rightarrow_{n+1} H_{1}, H_{2}, \Delta^{\prime}}{F \rightarrow G, \Gamma \Rightarrow_{n} H_{1} \vee H_{2}, \Delta^{\prime}}
$$

IH: $\frac{\Gamma \Rightarrow_{n} F, H_{1}, H_{2}, \Delta^{\prime}}{\Gamma \Rightarrow_{n+1} F, \Delta} \vee R \quad$ and $\quad \frac{G, \Gamma \Rightarrow_{n} H_{1}, H_{2}, \Delta^{\prime}}{G, \Gamma \Rightarrow_{n+1} \Delta} \vee R$
Similar for all other rules because $F \rightarrow G$ is not principal

Contraction

$$
\frac{F, F, \Gamma \Rightarrow \Delta}{\Gamma, \Gamma \Rightarrow \Delta} \quad \frac{\Gamma \Rightarrow F, F, \Delta}{\Gamma \Rightarrow F, \Delta}
$$

Lemma (Contraction)

(i) If $F, F, \Gamma \Rightarrow_{n} \Delta$ then $F, \Gamma \Rightarrow_{n} \Delta$
(ii) If $\Gamma \Rightarrow_{n} F, F, \Delta$ then $\Gamma \Rightarrow_{n} F, \Delta$

Proof by induction on n. Base case trivial. Step: focus on (i).
Assume $D: F, F, \Gamma \Rightarrow_{n+1} \Delta$
Let r be the last rule in D. Proof by cases.
Case $r=\rightarrow L$ (other rules similar)
Two subcases:

1. F is not principal formula
$\Rightarrow D=\frac{F, F, \Gamma^{\prime} \Rightarrow_{n} G, \Delta \quad F, F, H, \Gamma^{\prime} \Rightarrow_{n} \Delta}{F, F, G \rightarrow H, \Gamma^{\prime} \Rightarrow_{n+1} \Delta} \rightarrow L$
$\mathrm{IH}: \frac{F, \Gamma^{\prime} \Rightarrow_{n} G, \Delta \quad F, H, \Gamma^{\prime} \Rightarrow_{n} \Delta}{F, G \rightarrow H, \Gamma^{\prime} \Rightarrow \Delta} \rightarrow L$

Contraction

2. F is principal formula
$\Rightarrow D=\frac{G \rightarrow H, \Gamma \Rightarrow_{n} G, \Delta \quad H, G \rightarrow H, \Gamma \Rightarrow_{n} \Delta}{G \rightarrow H, G \rightarrow H, \Gamma \Rightarrow_{n+1} \Delta} \rightarrow L$

No $\perp R$

Lemma
If $\vdash_{G} \Gamma \Rightarrow \Delta$ then $\vdash_{G} \Gamma \Rightarrow \Delta-\{\perp\}$
Proof idea:

- no rule expects \perp on the right
- no rule can move \perp from right to left.
\Rightarrow no rule is disabled by removing \perp on the right
\Rightarrow the same proof rules that prove $\Gamma \Rightarrow \Delta$ also prove
$\Gamma \Rightarrow \Delta-\{\perp\}$.
Formally: induction on the height of the proof tree for $\Gamma \Rightarrow \Delta$
$=$ recursive transformation of proof tree.

Atomic cut

Lemma (Atomic cut)
If $D_{1}: \Gamma \Rightarrow A, \Delta$ and $D_{2}: A, \Gamma \Rightarrow \Delta$ then $\vdash_{G} \Gamma \Rightarrow \Delta$
Proof by induction on the depth of D_{1}.

Cut

Theorem (Cut)
If $D_{1}: \Gamma \Rightarrow F, \Delta$ and $D_{2}: F, \Gamma \Rightarrow \Delta$ then $\vdash_{G} \Gamma \Rightarrow \Delta$
Proof by induction on F.

