First-order Predicate Logic
Theories

Definitions

Definition

A signature Σ is a set of predicate and function symbols.

A Σ -formula is a formula that contains only predicate and function symbols from Σ .

A Σ -structure is a structure that interprets all predicate and function symbols from Σ .

Definition

A sentence is a closed formula.

In the sequel, S is a set of sentences.

Theories

Definition

A theory is a set of sentences S such that S is closed under consequence: If $S \models F$ and F is closed, then $F \in S$.

Let \mathcal{A} be a Σ -structure: $Th(\mathcal{A})$ is the set of all sentences true in \mathcal{A} : $Th(\mathcal{A}) = \{F \mid F \Sigma$ -sentence and $\mathcal{A} \models F\}$

Lemma

Let \mathcal{A} be a Σ -structure and F a Σ -sentence. Then $\mathcal{A} \models F$ iff $Th(\mathcal{A}) \models F$.

Corollary Th(A) is a theory.

Lemma Let A be a Σ -structure and F a Σ -sentence. Then $\mathcal{A} \models F$ iff $Th(\mathcal{A}) \models F$. Proof "⇒" Assume $\mathcal{A} \models F$ To show $Th(\mathcal{A}) \models F$, assume $\mathcal{B} \models Th(\mathcal{A})$ and show $\mathcal{B} \models F$ \Rightarrow for all $G \in Th(\mathcal{A}), \mathcal{B} \models G$ $\Rightarrow \mathcal{B} \models F$ because $F \in Th(\mathcal{A})$ "⇐": Assume $Th(\mathcal{A}) \models F$ \Rightarrow for all \mathcal{B} , if $\mathcal{B} \models Th(\mathcal{A})$ then $\mathcal{B} \models F$ $\Rightarrow \mathcal{A} \models F$ because $\mathcal{A} \models Th(\mathcal{A})$

Example

Notation: $(\mathbb{Z}, +, \leq)$ denotes the structure with universe \mathbb{Z} and the standard interpretations for the symbols + and \leq . The same notation is used for other standard structures where the interpretation of a symbol is clear from the symbol.

Example (Linear integer arithmetic)

 $Th(\mathbb{Z}, +, \leq)$ is the set of all sentences over the signature $\{+, \leq\}$ that are true in the structure $(\mathbb{Z}, +, \leq)$.

Famous numerical theories

 $Th(\mathbb{R}, +, \leq)$ is called linear real arithmetic. It is decidable.

 $Th(\mathbb{R}, +, *, \leq)$ is called real arithmetic. It is decidable.

 $Th(\mathbb{Z},+,\leq)$ is called linear integer arithmetic or Presburger arithmetic.

It is decidable.

 $Th(\mathbb{Z}, +, *, \leq)$ is called integer arithmetic. It is not even semidecidable (= r.e.).

Decidability via special algorithms.

Consequences

Definition Let S be a set of Σ -sentences.

Cn(S) is the set of consequences of S: $Cn(S) = \{F \mid F \Sigma \text{-sentence and } S \models F\}$

Examples

 $Cn(\emptyset)$ is the set of valid sentences. $Cn(\{\forall x \forall y \forall z \ (x * y) * z = x * (y * z)\})$ is the set of sentences that are true in all semigroups.

Lemma

If S is a set of Σ -sentences, Cn(S) is a theory.

Proof Assume *F* is closed and $Cn(S) \models F$. Show $F \in Cn(S)$, i.e. $S \models F$. Assume $A \models S$. Thus $A \models Cn(S)$ (*) and hence $A \models F$, i.e. $S \models F$. (*): Assume $G \in Cn(S)$, i.e. $S \models G$. With $A \models S$ the desired $A \models G$ follows.

Axioms

Definition

Let S be a set of Σ -sentences.

A theory T is axiomatized by S if T = Cn(S)

A theory T is axiomatizable if there is some decidable or recursively enumerable S that axiomatizes T.

A theory T is finitely axiomatizable

if there is some finite S that axiomatizes T.

Completeness and elementary equivalence

Definition

A theory T is complete if for every sentence F, $T \models F$ or $T \models \neg F$.

Fact Th(A) is complete.

Example

 $Cn(\{\forall x \forall y \forall z \ (x * y) * z = x * (y * z)\})$ is incomplete: neither $\forall x \forall y \ x * y = y * x$ nor its negation are present.

Definition

Two structures A and B are elementarily equivalent if Th(A) = Th(B).

Theorem

A theory T is complete iff all its models are elementarily equivalent.

Theorem

A theory T is complete iff all its models are elementarily equivalent. **Proof** If T is unsatisfiable, then T is complete (because $T \models F$ for all F) and all models are elementarily equivalent. Now assume T has a model \mathcal{M} . "⇒" Assume T is complete. Let $F \in Th(\mathcal{M})$. We cannot have $T \models \neg F$ because $\mathcal{M} \models T$ would imply $\mathcal{M} \models \neg F$ but $\mathcal{M} \models F$ because $F \in Th(\mathcal{M})$. Thus $T \models F$ by completeness. Therefore every formula that is true in some model of Tis true in all models of $T_{\rm c}$ "⇐"

Assume all models of *T* are elem.eq. Let *F* be closed. Either $\mathcal{M} \models F$ or $\mathcal{M} \models \neg F$. By elem.eq. $T \models F$ or $T \models \neg F$. Why? Assume $\mathcal{M} \models F$ (similar for $\mathcal{M} \models \neg F$). To show $T \models F$, assume $\mathcal{A} \models T$ and show $\mathcal{A} \models F$. $\Rightarrow Th(\mathcal{A}) = Th(\mathcal{M})$ by elem.eq. \Rightarrow for all closed *F*, $\mathcal{A} \models F$ iff $\mathcal{M} \models F$ $\Rightarrow \mathcal{A} \models F$ because $\mathcal{M} \models F$