Technische Universität München Institut für Informatik Prof. Tobias Nipkow, Ph.D. Johannes Hölzl and Lars Hupel

Exercise 39 (Critical Pairs)

Specify all critical pairs of the following term rewriting systems:

- a) $f(g(f(x))) \longrightarrow x, f(g(x)) \longrightarrow g(f(x))$
- b) $g(f(x)) \longrightarrow f(g^2(h(x))), h(f(x)) \longrightarrow f(g(h^2(x))), h(g(x)) \longrightarrow g(h(x))$

Which systems are locally confluent, which are convergent (i.e., terminating and confluent)?

Exercise 40 (Confluence)

Determine terms r_1 and r_2 such that $\{f(g(x)) \longrightarrow r_1, g(h(x)) \longrightarrow r_2\}$ is confluent.

Exercise 41 (Newman's Lemma)

Give an indirect proof of Newman's Lemma, by showing that \longrightarrow has an infinite reduction sequence, if \longrightarrow is locally confluent but not confluent.

Hint: Show that every element with two distinct normal forms has a direct successor with two distinct normal forms.

Homework 42 (Diamand Property)

Let \longrightarrow be a TRS with the following "diamond property":

 $y \longleftrightarrow x \longrightarrow z \land y \neq z \implies \exists u. y \longrightarrow u \longleftrightarrow z$

Show that, if a has a normal form, all reductions from a to this normal form have the same length.

Homework 43 (Critical Pairs')

Specify all critical pairs of the following term rewriting systems:

- a) $f(x,x) \longrightarrow a, f(x,g(x)) \longrightarrow b$
- b) $f(f(x,y),z) \longrightarrow f(x,f(y,z)), f(x,a) \longrightarrow x$
- c) $f(f(x,y),z) \longrightarrow f(x,f(y,z)), f(a,x) \longrightarrow x$

d) $0 + y \longrightarrow y, \ x + 0 \longrightarrow x, \ s(x) + y \longrightarrow s(x + y), \ x + s(y) \longrightarrow s(x + y)$

Which systems are locally confluent, which are convergent (i.e., terminating and confluent)?

Homework 44 (Completion)

Complete

$$E = \{f(g(f(x))) \approx x\}$$

to a convergent term rewriting system.