
First-Order Logic

Herbrand Theory
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Herbrand universe
The Herbrand universe T (F ) of a closed formula F in Skolem form
is the set of all terms that can be constructed using the function
symbols in F .

In the special case that F contains no constants, we first pick an
arbitrary constant, say a, and then construct the terms.

Formally, T (F ) is inductively defined as follows:

I All constants occurring in F belong to T (F );
if no constant occurs in F , then a ∈ T (F )
where a is some arbitrary constant.

I For every n-ary function symbol f occurring in F ,
if t1, t2, . . . , tn ∈ T (F ) then f (t1, t2, . . . , tn) ∈ T (F ).

Note: All terms in T (F ) are variable-free by construction!

Example

F = ∀x∀y P(f (x), g(c , y))
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Herbrand structure

Let F be a closed formula in Skolem form.
A structure A suitable for F is a Herbrand structure for F
if it satisfies the following conditions:

I UA = T (F ), and

I for every n-ary function symbol f occurring in F
and every t1, . . . , tn ∈ T (F ): f A(t1, . . . , tn) = f (t1, . . . , tn).

Fact
If A is a Herbrand structure, then A(t) = t for all t ∈ UA.

We call a Herbrand structure that is a model a Herbrand model.
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Matrix of a formula

Definition
The matrix of a formula F is the result of removing all quantifiers
(all ∀x and ∃x) from F . The matrix is denoted by F ∗.
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Fundamental theorem of predicate logic

Theorem
Let F be a closed formula in Skolem form.
Then F is satisfiable iff it has a Herbrand model.

Proof If F has a Herbrand model then it is satisfiable.

For the other direction let A be an arbitrary model of F .
We define a Herbrand structure T as follows:

Universe UT = T (F )
Function symbols f T (t1, . . . , tn) = f (t1, . . . , tn)
If F contains no constant: aA = u for some arbitrary u ∈ UA
Predicate symbols (t1, . . . , tn) ∈ PT iff (A(t1), . . . ,A(tn)) ∈ PA

Claim: T is also a model of F .
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Claim: T is also a model of F .

We prove a stronger assertion:

For every closed formula G in Skolem form
such that all fun. and pred. symbols in G occur in F :
if A |= G then T |= G

Proof By induction on the number n of universal quantifiers of G .

Basis n = 0. Then G has no quantifiers at all.
Therefore A(G ) = T (G ) (why?), and we are done.
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Induction step: G = ∀x H.

A |= G
⇒ for every u ∈ UA: A[u/x ](H) = 1
⇒ for every u ∈ UA of the form u = A(t)

where t ∈ T (G ): A[u/x ](H) = 1
⇒ for every t ∈ T (G ): A[A(t)/x ](H) = 1
⇒ for every t ∈ T (G ): A(H[t/x ]) = 1 (substitution lemma)
⇒ for every t ∈ T (G ): T (H[t/x ]) = 1 (induction hypothesis)
⇒ for every t ∈ T (G ): T [T (t)/x ](H) = 1 (substitution lemma)
⇒ for every t ∈ T (G ): T [t/x ](H) = 1 (T is Herbrand structure)
⇒ T (∀x H) = 1 (UT = T (G ))
⇒ T |= G
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Theorem
Let F be a closed formula in Skolem form.
Then F is satisfiable iff it has a Herbrand model.

What goes wrong if F is not closed or not in Skolem form?
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Herbrand expansion

Let F = ∀y1 . . . ∀ynF ∗ be a closed formula in Skolem form.
The Herbrand expansion of F is the set of formulas

E (F ) = {F ∗[t1/y1] . . . [tn/yn] | t1, . . . , tn ∈ T (F )}

Informally: the formulas of E (F ) are the result of substituting
terms from T (F ) for the variables of F ∗ in every possible way.

Example

E (∀x∀y P(f (x), g(c, y)) =

Note The Herbrand expansion can be viewed as a set of
propositional formulas.
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Gödel-Herbrand-Skolem Theorem

Theorem
Let F be a closed formula in Skolem form.
Then F is satisfiable iff its Herbrand expansion E (F ) is satisfiable
(in the sense of propositional logic).

Proof By the fundamental theorem, it suffices to show:
F has a Herbrand model iff E (F ) is satisfiable.

Let F = ∀y1 . . . ∀ynF ∗.
A is a Herbrand model of F

iff for all t1, . . . , tn ∈ T (F ), A[t1/y1] . . . [tn/yn](F ∗) = 1
iff for all t1, . . . , tn ∈ T (F ), A(F ∗[t1/y1] . . . [tn/yn]) = 1
iff for all G ∈ E (F ), A(G ) = 1
iff A is a model of E (F )
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Herbrand’s Theorem

Theorem
Let F be a closed formula in Skolem form.
F is unsatisfiable iff some finite subset of E (F ) is unsatisfiable.

Proof Follows immediately from the Gödel-Herbrand-Skolem
Theorem and the Compactness Theorem.
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Gilmore’s Algorithm

Let F be a closed formula in Skolem form
and let F1,F2,F3, . . . be an computable enumeration of E (F ).

Input: F

n := 0;
repeat n := n + 1;
until (F1 ∧ F2 ∧ . . . ∧ Fn) is unsatisfiable;
return “unsatisfiable”

The algorithm terminates iff F is unsatisfiable.
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Semi-decidiability Theorems

Theorem

(a) The unsatisfiability problem of predicate logic is (only)
semi-decidable.

(b) The validity problem of predicate logic is (only)
semi-decidable.

Proof
(a) Gilmore’s algorithm is a semi-decision procedure.
(The problem is undecidable. Proof later)
(b) F valid iff ¬F unsatisfiable.
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Löwenheim-Skolem Theorem

Theorem
Every satisfiable formula of first-order predicate logic
has a model with a countable universe.

Proof Let F be a formula,
and let G be an equisatisfiable formula in Skolem form
(as produced by the Normal Form transformations).
Fact: Every model of G is a model of F . (Check this!)

F satisfiable ⇒ G satisfiable
⇒ G has a Herbrand model T
⇒ F also has that model T
⇒ F has a countable model

(Herbrand universes are countable)

14



Löwenheim-Skolem Theorem

Formulas of first-order logic cannot enforce uncountable models

Formulas of first-order logic cannot axiomatize the real numbers
because there will always be countable models
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