Quantifier Elimination

Let S be a set of sentences.

Lemma $S \models F$ iff $S \models \forall F$

Lemma If $S \models F \leftrightarrow G$ then $S \models H[F] \leftrightarrow H[G]$, i.e. one can replace a subterm F of H by G .

Quantifier elimination

Definition If $\mathcal{T} \models \mathit{F} \leftrightarrow \mathit{F}'$ we say that F and F' are \mathcal{T} -equivalent.

Definition

A theory T admits quantifier elimination if for every formula F there is a quantifier-free T -equivalent formula G such that $f_V(G) \subset f_V(F)$. We call G a quantifier-free T-equivalent of F.

Examples

In linear real arithmetic:

$$
\exists x \exists y (3 * x + 5 * y = 7) \leftrightarrow ?
$$

\n
$$
\forall y (x < y \land y < z) \leftrightarrow ?
$$

\n
$$
\exists y (x < y \land y < z) \leftrightarrow ?
$$

Quantifier elimination

A quantifier-elimination procedure (QEP) for a theory T and a set of formulas F is a function that computes for every $F \in \mathcal{F}$ a quantifier-free T-equivalent.

Lemma

Let T be a theory such that

- \blacktriangleright T has a QEP for all formulas and
- \triangleright for all ground formulas G, $T \models G$ or $T \models \neg G$, and it is decidable which is the case.

Then T is decidable and complete.

Simplifying quantifier elimination: one ∃

Fact

If T has a QEP for all $\exists x \in \mathbb{R}$ where F is quantifier-free, then T has a QEP for all formulas.

Essence: It is sufficient to be able to eliminate a single ∃

Construction:

Given: a QEP ge1 for formulas of the form $\exists x \ F$ where F is quantifier-free

Define: a QEP for all formulas

Method: Eliminate quantifiers bottom-up by $qe1$, use $\forall \equiv \neg \exists \neg$

Simplifying quantifier elimination: $\exists x \, \bigwedge \,$ literals

Lemma

If T has a QEP for all $\exists x \in \mathbb{R}$ where F is a conjunction of literals, all of which contain x,

then T has a QEP for all $\exists x \in \mathbb{R}$ where F is quantifier-free.

Construction:

Given: a QEP qe1c for formulas of the form $\exists x (L_1 \wedge \cdots \wedge L_n)$ where each L_i is a literal that contains $\boldsymbol{\mathsf{x}}$

Define: $qe1(\exists x F)$ where F is quantifier-free Method: DNF; miniscoping; qe1c

This is the end of the generic part of quantifier elimination. The rest is theory specific.

Eliminating $-\frac{1}{2}$

Motivation: $\neg x \leq y \Leftrightarrow y \leq x \vee y = x$ for linear orderings

Assume that there is a computable function aneg that maps every negated atom to a quantifier-free and negation-free T -equivalent formula.

Lemma

If T has a QEP for all $\exists x \in \mathbb{R}$ where F is a conjunction of atoms, all of which contain x,

then T has a QEP for all $\exists x \in$ where F is quantifier-free.

Construction:

Given: a QEP qe1ca for formulas of the form $\exists x (A_1 \wedge \cdots \wedge A_n)$ where each atom A_i contains x

```
Define: qe1(\exists x F) where F quantifier-free
Method: NNF; aneg; DNF; miniscoping; ge1ca
```
Quantifier Elimination Dense Linear Orders Without Endpoints

Dense Linear Orders Without Endpoints

$$
\Sigma = \{<,=\}
$$

Let **DLO** stand for "dense linear order without endpoints" and for the following set of axioms:

> $\forall x \forall y \forall z (x < y \land y < z \rightarrow x < z)$ $\forall x \neg(x < x)$ $\forall x \forall y \ (x < y \lor x = y \lor y < x)$ $\forall x \forall z$ ($x < z$ $\rightarrow \exists y$ ($x < y \land y < z$) $\forall x \exists y \ x < y$ $\forall x \exists y \ y < x$

Models of DLO?

Theorem All countable DLOs are isomorphic. Quantifier elimination example

Example $DLO \models \exists y (x < y \land y < z) \leftrightarrow$

Eliminiation of "¬"

Elimination of negative literals (function aneg): $DLO \models \neg x = y \leftrightarrow x < y \lor y < x$ $DLO \models \neg x \leq y \leftrightarrow x = y \lor y \leq x$

Quantifier elimination for conjunctions of atoms

QEP q e1ca $(\exists x (A_1 \wedge \cdots \wedge A_n)$ where x occurs in all A_i :

1. Eliminate "=": Drop all A_i of the form $x = x$.

If some A_i is of the form $x = y$ (x and y different), eliminate $\exists x$:

 $\exists x (x = t \land F) \equiv F[t/x]$ (x does not occur in t)

Otherwise:

- 2. Eliminate $x < x$: return \perp
- 3. Separate atoms into lower and upper bounds for x and use

DLO $\models \exists x(\bigwedge^m)$ $i=1$ $l_i < x \wedge \bigwedge^n$ j=1 $x < u_j$) $\leftrightarrow \stackrel{m}{\wedge}$ $i=1$ \bigwedge^n j=1 $l_i < u_j$

Special case: $\bigwedge_{k=1}^0 F_k = \top$

Examples

$$
\exists x (x < z \land y < x \land x < y') \leftrightarrow ?
$$

\n
$$
\forall x (x < y) \leftrightarrow ?
$$

\n
$$
\exists x \exists y \exists z (x < y \land y < z \land z < x) \leftrightarrow ?
$$

Complexity

Quadratic blow-up with each elimination step

⇒ Eliminating all ∃ from

$$
\exists x_1 \ldots \exists x_m \ F
$$

where \digamma has length \emph{n} needs $\emph{O}(\quad$), assuming \digamma is DNF.

Consequences

- \triangleright $Cn(DLO)$ has quantifier elimination
- \triangleright Cn(DLO) is decidable and complete
- All models of DLO (for example $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$) are elementarily equivalent:

you cannot distinguish models of DLO by first-order formulas.

Quantifier Elimination Linear real arithmetic

Linear real arithmetic

 $\mathcal{R}_{+} = (\mathbb{R}, 0, 1, +, <, =), \;\; R_{+} = Th(\mathcal{R}_{+})$

For convenience we allow the following additional function symbols: For every $c \in \mathbb{Q}$:

 \blacktriangleright c is a constant symbol

 \triangleright c multiplication with c, is a unary function symbol

A term in normal form: $c_1 \cdot x_1 + \ldots + c_n \cdot x_n + c$ where $c_i \neq 0$, $x_i \neq x_j$ if $i \neq j$.

Every atom A is R_+ -equivalent to an atom $0 \bowtie t$ in normal form (NF) where $\bowtie \in \{<, =\}$ and t is in normal form.

An atom is solved for x if it is of the form $x < t$, $x = t$ or $t < x$ where x does not occur in t .

Any atom A in normal form that contains x can be transformed into an R_{+} -equivalent atom solved for x. Function $sol_x(A)$ solves A for x.

Eliminiation of "¬"

Elimination of negative literals (function aneg): R_+ $\models \neg x = y \leftrightarrow x < y \lor y < x$ R_{+} $\models \neg x \leq y \leftrightarrow x = y \vee y \leq x$

Fourier-Motzkin Elimination

QEP $\mathsf{qela}(\exists \mathsf{x} \; (A_1 \wedge \cdots \wedge A_n)$, all A_i in NF and contain x : 1. Let $S = \{sol_x(A_1), \ldots, sol_x(A_n)\}\$ 2. Eliminate $"="$ If $(x = t) \in S$ for some t, eliminate $\exists x$:

 $\exists x (x = t \land F) \equiv F[t/x]$ (x does not occur in t)

Otherwise return

 $\bigwedge \qquad \bigwedge \qquad l < u$ (l<x)∈S (x<u)∈S

Special case: empty \bigwedge is \top

All returned formulas are implicitly put into NF.

Examples $\exists x \exists y (3x+5y<7 \wedge 2x-3y<2) \leftrightarrow ?$ $\exists x \forall y (3y \leq x \lor x \leq 2y) \leftrightarrow ?$

Can DNF be avoided?

Ferrante and Rackoff's theorem

Theorem

Let F be quantifier-free and negation-free and assume all atoms that contain x are solved for x. Let S_{x} be the set of atoms in F that contain x. Let $L = \{l | (l < x) \in S_x\},\$ $U = \{u \mid (x < u) \in S_x\},\ E = \{t \mid (x = t) \in S_x\}.$ Then

$$
R_{+} \models \exists x F \leftrightarrow F[-\infty/x] \vee F[\infty/x] \vee \bigvee_{t \in E} F[t/x] \vee \bigvee_{l \in L} F[0.5(l+u)/x]
$$

(note: empty \bigvee is \bot) where $\mathsf{F}[-\infty/\mathrm{x}]$ $(\mathsf{F}[\infty/\mathrm{x}])$ is the following transformation of all solved atoms in $F: x < t \mapsto \top(\bot)$ $t < x \mapsto \perp (\top)$ $x = t \mapsto \perp (\perp)$

Examples $\exists x (y \leq x \land x \leq z) \leftrightarrow ?$ $\exists x \ x < y \leftrightarrow ?$

Ferrante and Rackoff's procedure

Define $qe1(\exists x \ F)$:

- 1. Put F into NNF, eliminate all negations, put all atoms into normal form, solve those atoms for x that contain x.
- 2. Apply Ferrante and Rackoff's theorem.

Theorem

Eliminating all quantifiers with Ferrante and Rackoff's procedure from a formula of size n takes space $O(2^{cn})$ and time $O(2^{2^{dn}})$.

Quantifier Elimination Linear Integer Arithmetic

See [Harrison] or [Enderton] under "Presburger"