First-Order Logic
Resolution

Resolution for predicate logic

Gilmore's algorithm is correct and complete,
but useless in practice.

We upgrade resolution to make it work for predicate logic.

Recall: resolution in propositional logic

Resolution step:

{L1,..., L, A oL —AY

\ /

{Li,..., Lo L, .o,

Resolution graph:

{-A B} {A} {-B}

}\D

A set of clauses is unsatisfiable iff the empty clause can be derived.

Adapting Gilmore's Algorithm

Gilmore's Algorithm:

Let F be a closed formula in Skolem form
and let Fq, Fp, F3,... be an enumeration of E(F).

n:=0;
repeat n:=n+1
until (F1 A F A... A Fp) is unsatisfiable;
— this can be checked with any calculus for propositional logic
return “unsatisfiable”

“any calculus” ~- use resolution for the unsatisfiability test

Terminology

Literal /clause/CNF is defined as for propositional logic
but with the atomic formulas of predicate logic.

A ground term /formula/etc is a term/formula/etc
that does not contain any variables.

An instance of a term/formula/etc
is the result of applying a substitution to a term/formula/etc.

A ground instance
is an instance that does not contain any variables.

Clause Herbrand expansion

Let F =Vy;...Vy, F* be a closed formula in Skolem form with
F*in CNF, and let C,..., G, be the clauses of F*.

The clause Herbrand expansion of F is the set of ground clauses

CE(F) = U{C,-[tl/yl] o te/yel | t1, .o th € T(F)}
i=1

Lemma
CE(F) is unsatisfiable iff E(F) is unsatisfiable.

Proof Informally speaking, “"CE(F) = E(F)".

Ground resolution algorithm

Let F be a closed formula in Skolem form with F* in CNF.
Let Ci, Gy, Gs, ... be an enumeration of CE(F).

n:=0;

S:=0;

repeat
n:=n+1;
S:=SU{GC};

until S Fres O

return “unsatisfiable”

Note: The search for [can be performed incrementally every
time S is extended.

Example

F* = {{=P(x), ~P(f(a)), QI¥)}, {P(y)}, {~P(g(bh,x)), ~Q(P)}}

Ground resolution theorem

The correctness of the ground resolution algorithm can be
rephrased as follows:

Theorem

A formula F =Vy; ... Yy, F* with F* in CNF is unsatisfiable iff
there is a sequence of ground clauses Cy, ..., C, = O such that
foreveryi=1,....m

» either C; is a ground instance of a clause C € F*,
ie. Ci= Clti/y1]...[tn/yn] where t1,... t, € T(F),
» or C; is a resolvent of two clauses C;, Cp with a < i and b < i

Where do the ground substitutions come from?

Better:
» allow substitutions with variables

» only instantiate clauses enough to allow one (new kind of)
resolution step

Example
Resolve {P(x), Q(x)} and {=P(f(y)). R(y)}

Substitutions as functions

Substitutions are functions from variables to terms:
[t/x] maps x to t (and all other variales to themselves)
Functions can be composed.

Composition of substitutions is denoted by juxtaposition:
[t1/x][t2/y] first substitutes t; for x and then substitutes t, for y.

Example
(PO yDIF(y)/X1[b/y] = (P(f(y),¥))[b/y] = P(f(b),b)

Similarly we can compose arbitrary substitutions o1 and o5:
o105 is the substitution that applies o1 first and then o».

Substitutions are functions. Therefore

o1 = oo iff for all variables x, xo1 = xo0>

10

Substitutions as functions

Definition
The domain of a substitution: dom(o) = {x | xo # x}

Example
dom([a/x][b/y]) = {x,y}

Substitutions are defined to have finite domain.
Therefore every substitution can be written as a
simultaneous substitution [t1/x1,. .., tn/Xn].

11

Unifier and most general unifier
Let L={Ly,...,Lx} be a set of literals.
A substitution o is a unifier of L if
Lic =lso=---=Lio
i.e. if |Lo| =1, where Lo = {Ly0,...,Lko}.

A unifier o of L is a most general unifier (mgu) of L if
for every unifier o’ of L there is a substitution § such that o/ = 4.

12

Exercise

\ Yés\ No‘

Unifiable?

P(x, f(y))
P(x, f(x))

P(f(z), w,g(w))

P(g(a) 2)

P(x, g(x), 8°(x))

P(g(y),f(a))

P(x, f(y))

13

Unification algorithm

Input: a set L # () of literals
o =[] (the empty substitution)
while |Lo| > 1 do
Find the first position at which two literals L1, Ly € Lo differ
if none of the two characters at that position is a variable
then return “non-unifiable”
else let x be the variable and t the term starting at that position
if x occurs in t
then return “non-unifiable”
else 0 := o [t/x]
return ¢

Example

{_'P(f(z7g(aa)/))7h(z))v
—P(f(f(u,v),w), h(f(a, b))) }

14

Correctness of the unification algorithm

Lemma
The unification algorithm terminates.

Proof Every iteration of the while-loop (possibly except the last)
replaces a variable x by a term t not containing x, and so the
number of variables occurring in Lo decreases by one.

Lemma
If L is non-unifiable then the algorithm returns “non-unifiable”.

Proof If L is non-unifiable then the algorithm can never exit the
loop normally.

15

Correctness/completeness of the unification algorithm

Lemma
If L is unifiable then the algorithm returns the mgu of L
(and so in particular every unifiable set L has an mgu).

Proof Assume L is unifiable and let n be the number of iterations
of the loop on input L.

Let o9 =[], for 1 < i < n let o; be the value of o after the i-th

iteration of the loop.

We prove for every 0 < i < n:

(a) If 1 <, the i-th iteration does not return “non-unifiable"”.

(b) For every unifier o’ of L there is a substitution §; such that
o' =ojd;.

By (a) the algorithm exits the loop normally after n iterations.

By (b) it returns a most general unifier.

16

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove.
For (b) take 0 = o”.

Step (i = i+1)

For (a), since |Lo;| > 1 and Lo; unifiable, x and t exist
and x does not occur in t, and so “non-unifiable” is not returned.

For (b): Let o’ be a unifier of L. IH: ¢/ = o;; for some §;.

d; must be of the form [t1/x1, ..., tx/xk, u/x] where x1, ..., xk, x
are distinct. Define d;41 = [t1/x1, ..., tk/xk].
Note u = xd; = td; = td;+1 (o;0; is unifier (IH), x not in t)
Oi+10it+1
= o[t/x]di+1 (algorithm extends o; with [t/x])
= 0j [tl/Xl, ce, tk/Xk, t5f+1/X]
= 0; [tl/Xl,...,tk/Xk,u/X] (Note u= tcS,-H)
= 0i0;

= o (IH)

17

The standard view of unification

A unification problem is a pair of terms s =’ t
(or a set of pairs {s; =" t1,...,5, =" t,})

A unifier is a substitution ¢ such that so = to
(or s10 = t10,...,5,0 = t0)

18

Renaming

Definition
A substitution p is a renaming if for every variable x, xp is a
variable and p is injective on dom(p).

19

Resolvents for first-order logic

A clause R is a resolvent of two clauses C; and G if the following
holds:

P There is a renaming p such that
no variable occurs in both C; and G p and
p is injective on the set of variables in (;

» There are literals Ly,...,Lp, € Gi (m>1)
and literals L},..., L}, € Cop (n > 1) such that

L={Llq,....Lm L}, ... L.}

is unifiable. Let o be an mgu of L.
» R=((CG —{L1,....Lm})U(GCp—{L},....L,}))o

Example
G ={P(x), Qx), P(g(y)) } and G ={-P(x), R(f(x),a) }

20

Exercise

How many resolvents are there?

{P(x), P(f(x))

{_'P(y)v Q(y,Z)}

G G Resolvents
{P(x), Q(x, ¥)} {=P(f(x)}
{Q(g(x)), R f(X)})} {~Q(f(x))}

21

Why renaming?

Example
Vx(P(x) A =P(f(x)))

22

Resolution for first-order logic

As for propositional logic, F Fres C means that clause C can be
derived from a set of clauses F by a sequence of resolution steps,
i.e. that there is a sequence of clauses Cy,...,C, = C

such that for every C;

» either C; € F
» or C; is the resolvent of C, and Cp, where a, b < i.

Questions:
Correctness Does F Fges L1 imply that F is unsatisfiable?

Completeness Does unsatisfiability of F imply F Fges (1?7

23

Exercise

Derive [J from the following clauses:

1.

No oA~ b

{=P(x), Q(x), R(x, f(x))}
{=P(x), Q(x), S(f(x))}
{T(a)}

{P(a)}

{-R(a,2), T(2)}
{=T(x),~Q(x)}
{=T(y),~S()}

24

Correctness of Resolution for First-Order Logic

Definition

The universal closure of a formula H with free variables x1, ..., x,:
VH = Vx3Vxa...VxpH

Theorem

Let F be a closed formula in Skolem form with matrix F* in CNF.
If F* Fres L then F is unsatisfiable.

25

Completeness: The idea

Simulate ground resolution because that is complete

Lift the resolution proof from the ground resolution proof

26

Lifting Lemma

Let Ci, G be two clauses and
let C;, C be two ground instances
with (propositional) resolvent R’.

Then there is a resolvent R of Gy, G

such that R is a ground instance of R.

R/

—: Substitution
—: Resolution

27

Lifting Lemma: example

{=P(f(x)), Q(x)} {P(f(e())}
J[g(a/x]\ l[a/y]
{=P(f(g(2))), Qg(a) g(a)))}

e

{Q(g(a))}

28

Completeness of Resolution for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
If F is unsatisfiable then F* Fpges L.

Proof If F is unsatisfiable, there is a ground resolution proof
Ci,...,C, = 0. We transform this step by step into a resolution
proof Ci,...,C, = O such that C,-’ is a ground instance of C;.

If C/ is a ground instance of some clause C € F*:

Set G;=C

If C/ is a resolvent of C}, C; (a,b < i):

Cl, C/ have been transformed already into C,, Cp s.t. C}, C} are
ground instances of C,, Cp. By the Lifting Lemma there is a

resolvent R of C,, Cp s.t. C! is a ground instance of R.
Set C; = R.

29

Resolution Theorem for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
Then F is unsatisfiable iff F* pes .

30

A resolution algorithm

Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while OJ ¢ S and
there are clauses C,, Cp, € S and resolvent R of C, and C,
such that R ¢ S (modulo renaming)
do S:=SU{R}
The selection of resolvents must be fair:
every resolvent is added eventually

Three possible behaviours:
» The algorithm terminates and (0 € S
= F is unsatisfiable
» The algorithm terminates and O ¢ S
= F is satisfiable

» The algorithm does not terminate
(= F is satisfiable)

31

Refinements of resolution

Problems of resolution:

» Branching degree of the search space too large

» Too many dead ends

» Combinatorial explosion of the search space
Solution:

Strategies and heuristics: forbid certain resolution steps, which
narrows the search space.

But: Completeness must be preserved!

32

