Propositional Logic Resolution

Clause representation of CNF formulas

CNF:

$$(L_{1,1} \vee \ldots \vee L_{1,n_1}) \wedge \ldots \wedge (L_{k,1} \vee \ldots \vee L_{1,n_k})$$

Representation as set of sets of literals:

$$\{\underbrace{\{L_{1,1},\,\ldots,\,L_{1,n_1}\}}_{clause},\,\ldots,\,\{L_{k,1},\,\ldots,\,L_{1,n_k}\}\}$$

- Clause = set of literals (disjunction).
- A formula in CNF can be viewed as a set of clauses
- Degenerate cases:
 - ▶ The empty clause stands for \bot .
 - ▶ The empty set of clauses stands for \top .

The joy of sets

We get "for free":

- Commutativity: A ∨ B ≡ B ∨ A, both represented by {A, B}
- Associativity: $(A \lor B) \lor C \equiv A \lor (B \lor C)$, both represented by $\{A, B, C\}$
- ▶ Idempotence: $(A \lor A) \equiv A$, both represented by $\{A\}$

Sets are a convenient representation of conjunctions and disjunctions that build in associativity, commutativity and itempotence

Resolution — The idea

Input: Set of clauses F

Question: Is F unsatisfiable?

Algorithm:

Keep on "resolving" two clauses from F and adding the result to F until the empty clause is found

Correctness:

If the empty clause is found, the initial F is unsatisfiable Completeness:

If the initial F is unsatisfiable, the empty clause can be found.

Correctness/Completeness of syntactic procedure (resolution) w.r.t. semantic property (unsatisfiability)

Resolvent

Definition

Let L be a literal. Then \overline{L} is defined as follows:

$$\overline{L} = \left\{ \begin{array}{ll} \neg A_i & \text{if } L = A_i \\ A_i & \text{if } L = \neg A_i \end{array} \right.$$

Definition

Let C_1 , C_2 be clauses and let L be a literal such that $L \in C_1$ and $\overline{L} \in C_2$. Then the clause

$$(C_1 - \{L\}) \cup (C_2 - \{\overline{L}\})$$

is a resolvent of C_1 and C_2 .

The process of deriving the resolvent is called a resolution step.

Graphical representation of resolvent:

If $C_1 = \{L\}$ and $C_2 = \{\overline{L}\}$ then the empty clause is a resolvent of C_1 and C_2 . The special symbol \square denotes the empty clause.

Recall: \square represents \bot .

Resolution proof

Definition

A resolution proof of a clause C from a set of clauses F is a sequence of clauses C_0, \ldots, C_n such that

- ▶ $C_i \in F$ or C_i is a resolvent of two clauses C_a and C_b , a, b < i,
- $ightharpoonup C_n = C$

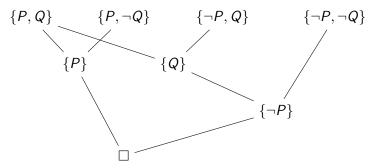
Then we can write $F \vdash_{Res} C$.

Note: F can be finite or infinite

Resolution proof as DAG

A resolution proof can be shown as a DAG with the clauses in F as the leaves and C as the root:

Example



A linear resolution proof

```
0: \{P, Q\}

1: \{P, \neg Q\}

2: \{\neg P, Q\}

3: \{\neg P, \neg Q\}

4: \{P\} (0, 1)

5: \{Q\} (0, 2)

6: \{\neg P\} (3, 5)

7: \square (4, 6)
```

Correctness of resolution

Lemma (Resolution Lemma)

Let R be a resolvent of two clauses C_1 and C_2 . Then C_1 , $C_2 \models R$.

Proof By definition $R = (C_1 - \{L\}) \cup (C_2 - \{\overline{L}\})$ (for some L).

Let $A \models C_1$ and $A \models C_2$. There are two cases.

If $A \models L$ then $A \models C_2 - \{\overline{L}\}$ (because $A \models C_2$), thus $A \models R$.

If $A \not\models L$ then $A \models C_1 - \{L\}$ (because $A \models C_1$), thus $A \models R$.

Theorem (Correctness of resolution)

Let F be a set of clauses. If $F \vdash_{Res} C$ then $F \models C$.

Proof Assume there is a resolution proof $C_0, \ldots, C_n = C$. By induction on i we show $F \models C_i$. IH: $F \models C_j$ for all j < i. If $C_i \in F$ then $F \models C_i$ is trivial. If C_i is a resolvent of C_a and C_b , a, b < i, then $F \models C_a$ and $F \models C_b$ by IH and $C_a, C_b \models C_i$ by the resolution lemma. Thus $F \models C_i$.

Corollary

Let F be a set of clauses. If $F \vdash_{Res} \Box$ then F is unsatisfiable.

Completeness of resolution

Theorem (Completeness of resolution)

Let F be a set of clauses. If F is unsatisfiable then $F \vdash_{Res} \Box$.

Proof If F is infinite, there must be a finite unsatisfiable subset of F (by the Compactness Lemma); in that case let F be that finite subset. The proof of $F \vdash_{Res} \Box$ is by induction on the number of distinct atoms in F.

Corollary

A set of clauses F is unsatisfiable iff $F \vdash_{Res} \Box$.

Resolution is only refutation complete

Not everything that is a consequence of a set of clauses can be derived by resolution.

Exercise

Find F and C such that $F \models C$ but not $F \vdash_{Res} C$.

How to prove
$$F \models C$$
 by resolution?
Prove $F \cup \{\neg C\} \vdash_{Res} \square$

A resolution algorithm

Input: A CNF formula F, i.e. a finite set of clauses

while there are clauses $C_a, C_b \in F$ and resolvent R of C_a and C_b such that $R \notin F$ do $F := F \cup \{R\}$

Lemma

The algorithm terminates.

Proof There are only finitely many clauses over a finite set of atoms.

Theorem

The initial F is unsatisfiable iff \square is in the final F

Proof F_{init} is unsat. iff $F_{init} \vdash_{Res} \square$ iff $\square \in F_{final}$ because the algorithm enumerates all R such that $F_{init} \vdash R$.

Corollary

The algorithm is a decision procedure for unsatisfiability of CNF formulas.