First-Order Logic Undecidability

[Cutland, Computability, Section 6.5.]

- ► Aim: Show that validity of first-order formulas is undecidability
- ► Method: Reduce the halting problem to validity of formulas by expressing program behaviour as formulas
 - Logical formulas can talk about computations!

Register machine programs (RMPs)

A register machine program is a sequence of instructions I_1, \ldots, I_s . The instructions manipulate registers R_i ($i=1,2,\ldots$) that contain (unbounded!) natural numbers.

There are 4 instructions:

$$R_n := 0$$

 $R_n := R_n + 1$
 $R_n := R_m$
IF $R_m = R_n$ GOTO p

Assumption: all jumps in a program go to $1, \ldots, s+1$; execution terminates when the PC is s+1.

Let r be the maximal index of any register used in a program P. Then the state of P during execution can be described by a tuple of natural numbers

$$(n_1,\ldots,n_r,k)$$

where n_i is the contents of R_i and k is the PC (the number of the next instruction to be executed).

Undecidability

Theorem (Undecidability of the halting problem for RMPs)

It is undecidable if a given register machine program terminates when started in state (0, ..., 0, 1).

We reduce the halting problem for RMPs to the validity problem for first-order formulas.

Notation:

 $P(0) \downarrow =$ "RMP P started in state (0, ..., 0, 1) terminates"

Theorem

Given an RMP P we can effectively construct a closed formula φ_P such that $P(0) \downarrow iff \models \varphi_P$.

4