	Logics Exercise	
	TDII M.:	
	TU München Institut für Informatik	Prof. Tobias Nipkow Lars Hupel
SS 2018	Exercise Sheet 4	30.04.2018

Submission of homework: Before tutorial on 08.05.2018. Until further notice, homework has to be submitted in groups of two students.

Exercise 4.1. [Atomic Cut]

Let A be an atomic formula. Prove that if $\vdash_G \Gamma \Rightarrow A, \Delta$ and $\vdash_G A, \Gamma \Rightarrow \Delta$, then $\vdash_G \Gamma \Rightarrow \Delta$.

Exercise 4.2. [Natural Deduction]

Prove the following formulas by natural deduction:

1.
$$(F \wedge G) \wedge H \to F \wedge (G \wedge H)$$

2.
$$(F \vee G) \vee H \to F \vee (G \vee H)$$

3.
$$\neg (F \land G) \rightarrow (\neg F \lor \neg G)$$

Exercise 4.3. [Classical Reasoning]

We replace rule \perp of the calculus of natural deduction by either one of the following rules:

- $\frac{1}{F \vee \neg F}$ (law of excluded middle)
- $\frac{\neg \neg F}{F}$ (double negation elimination)

Additionally, we add the rule $\frac{\perp}{F}$ ($\perp E$). Show that the calculus of natural deduction remains complete in both cases.

Exercise Sheet 4 Logics Page 2

Homework 4.1. [Natural Deduction]

(10 points)

Prove the following formulas by natural deduction (as specified in the lecture):

- 1. $((A \to B) \to A) \to A$
- 2. $(\neg G \to F) \to (\neg F \to G)$
- 3. $\neg\neg\neg F \rightarrow \neg F$ (without using the \bot rule, but the $\bot E$ rule from Exercise 4.3 is allowed)

Homework 4.2. [Substitution]

(10 points)

Assume that there are proofs for $\vdash_N G \to G'$ and $\vdash_N G' \to G$. Construct the proof for $\vdash_N F[G/A] \to F[G'/A]$.