LOGICS EXERCISE

TU München Institut für Informatik

Prof. Tobias Nipkow Lars Hupel

 $\mathrm{SS}~2018$

EXERCISE SHEET 5

08.05.2018

Submission of homework: Before tutorial on 15.05.2018. Until further notice, homework has to be submitted in groups of two students.

Exercise 5.1. [Induction Proofs]

Show that the following schema has a proof in natural deduction for all $n \ge 1$:

$$P_n = ((A_1 \land (A_2 \land (\ldots \land A_n) \ldots) \to B) \to (A_1 \to (A_2 \to (\ldots (A_n \to B) \ldots))))$$

Exercise 5.2. [From Sequent Calculus to Natural Deduction]

How can we construct, from a sequent calculus proof $\Gamma \Rightarrow \Delta$, a natural deduction proof $\Gamma \vdash_{N} \bigvee \Delta$?

Exercise 5.3. [Hilbert Calculus]

Prove the following formula with a linear proof in Hilbert calculus: $(F \land G) \rightarrow (G \land F)$

Hint: Use the deduction theorem.

Homework 5.1. [A Smaller Set of Axioms for Hilbert Calculus] (5 points)In the lecture, Hilbert calculus for propositional logic was introduced by means of nine axioms. However, the following three axioms are already sufficient:

A1
$$F \to (G \to F)$$

A2 $(F \to G \to H) \to (F \to G) \to F \to H$
A10 $(\neg F \to \neg G) \to (G \to F)$

Derive the following statement from the axioms above with help of $\rightarrow_E: \neg(F \rightarrow F) \rightarrow G$

Homework 5.2. [From Sequent Calculus to Natural Deduction] (8 points) In Exercise 5.2, we constructed, from a sequent calculus proof of $\Gamma \Rightarrow \Delta$, a natural deduction proof $\Gamma \vdash_{\mathbf{N}} \bigvee \Delta$. That construction was "classical", because it required the use of the \perp rule. We will consider a restricted Sequent Calculus here and the special case where $\Delta = \{F\}$, i.e., always contains exactly one formula.

The following system – a variant of Sequent Calculus – is called G3c:

Ax
$$P, \Gamma \Rightarrow P$$
 (P atomic) $L \perp \perp, \Gamma \Rightarrow A$ $L \land \frac{A, B, \Gamma \Rightarrow C}{A \land B, \Gamma \Rightarrow C}$ $R \land \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \land B}$ $L \lor \frac{A, \Gamma \Rightarrow C}{A \lor B, \Gamma \Rightarrow C}$ $R \lor \frac{\Gamma \Rightarrow A_i}{\Gamma \Rightarrow A_0 \lor A_1}$ ($i = 0, 1$) $L \rightarrow \frac{A \rightarrow B, \Gamma \Rightarrow A}{A \rightarrow B, \Gamma \Rightarrow C}$ $R \lor \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B}$

Give a direct construction (without using the \perp rule, but $\perp E$ is allowed) that transforms a G3c proof $\Gamma \Rightarrow F$ into a natural deduction proof $\Gamma \vdash_{\mathbf{N}} F$.

Hints: Perform an induction on the depth of the G3c proof. It is sufficient to consider the base cases and two other cases of your own choosing.

[Truth Tables] In the lecture, the following lemma was discussed:

Let $\operatorname{atoms}(F) \subseteq \{A_1, \ldots, A_n\}$. Then we can construct a proof $A_1^{\mathcal{A}}, \ldots, A_n^{\mathcal{A}} \vdash_{\mathcal{N}} F^{\mathcal{A}}$.

Recall the definition of $F^{\mathcal{A}}$:

Homework 5.3.

$$F^{\mathcal{A}} = \begin{cases} F & \text{if } \mathcal{A}(F) = 1\\ \neg F & \text{otherwise} \end{cases}$$

Prove the lemma by induction on F! It suffices to prove the cases for atomic formulas, negation, and disjunction.

(7 points)