LOGICS EXERCISE

TU München Institut für Informatik

Prof. Tobias Nipkow Lars Hupel

SS 2018

EXERCISE SHEET 7

23.05.2018

Submission of homework: Before tutorial on 29.05.2018. Until further notice, homework has to be submitted in groups of two students.

Exercise 7.1. [Herbrand Models]

Given the formula

 $F = \forall x \forall y (P(f(x), g(y)) \land \neg P(g(x), f(y)))$

1. Specify a Herbrand model for F.

2. Specify a Herbrand structure suitable for F, which is not a model of F.

Solution:

We define $U_{\mathcal{A}} = T(F)$, i.e., the Herbrand universe for F. We invent a constant $a \in T(F)$. We define $f^{\mathcal{A}}$ and $g^{\mathcal{A}}$ to be the Herbrand interpretations.

- 1. $P^{\mathcal{A}} = \{ (f(t_1), g(t_2)) \mid t_1, t_2 \in T(F) \}.$
- 2. $P^{\mathcal{A}} = \{ (g(t_1), f(t_2)) \mid t_1, t_2 \in T(F) \}.$

Exercise 7.2. [(In)finite Models]

- 1. Show that any model (for a formula of predicate logic) with a universe of size n can be extended to a model of size m for any $m \ge n$. Can it also be extended to an *infinite* model?
- 2. Now consider the extension of predicate logic with equality. Does above property still hold?

Solution:

1. Let \mathcal{A} be a model. We pick any $d \in U_{\mathcal{A}}$ as an element to "clone" m - n times. The precise construction works as follows: We define $D = \{(d, k) \mid k \in \mathbb{N} \land k < m - n\}$. Now, we extend $U_{\mathcal{A}}$ with D.

Let \mathcal{A}' be a structure with the universe $U_{\mathcal{A}'} = U_{\mathcal{A}} \uplus D$. All functions and predicate symbols are interpreted identically to \mathcal{A} , with the extension that all elements (d, k) are treated as d.

We interpret a unary predicate P as follows:

$$P^{\mathcal{A}'} = \begin{cases} P^{\mathcal{A}} & \text{if } d \notin P^{\mathcal{A}} \\ P^{\mathcal{A}} \cup D & \text{otherwise} \end{cases}$$

The construction can be extended for n-ary predicates, by looking at each position separately.

Similary, we can give the modified interpretation for a unary function symbol f:

$$f^{\mathcal{A}'}(x) = \begin{cases} f^{\mathcal{A}}(x) & \text{if } x \notin D\\ f^{\mathcal{A}}(d) & \text{if } x = (d,k) \in D \end{cases}$$

Extending to an infinite model works in exactly the same way, except for adding infinitely many copies of d by dropping the k < m - n condition.

2. This does not work, because the = predicate allows one to distinguish between different elements.

Counterexample: The formula $F = \forall x \forall y (x = y)$ has a trivial model \mathcal{A} with cardinality 1. Obviously, there cannot be any larger model.

Exercise 7.3. [Natural Numbers and FOL]

We consider the following axioms in an attempt to model the natural numbers in predicate logic:

1. $F_1 = \forall x \forall y (f(x) = f(y) \rightarrow x = y)$

2.
$$F_2 = \forall x (f(x) \neq 0)$$

3. $F_3 = \forall x(x = 0 \lor \exists y(x = f(y)))$

Give a model with an *uncountable* universe for:

- 1. $\{F_1, F_2\}$
- 2. $\{F_1, F_2, F_3\}$

Hint: A set S is uncountable if there is no bijection between S and \mathbb{N} .

Solution:

- 1. $U_{\mathcal{A}} = \mathbb{R}_0^+, 0^{\mathcal{A}} = 0$, and $f^{\mathcal{A}}(x) = x + 1$ $f^{\mathcal{A}}$ is clearly injective and there is no x such that $f^{\mathcal{A}}(x) = 0$, because $-1 \notin U_{\mathcal{A}}$.
- 2. We take $U_{\mathcal{A}}$ to be the union of the positive real numbers and the non-positive whole numbers, i.e., $U_{\mathcal{A}} = \mathbb{R}_{>0} \cup \mathbb{Z}_{\leq 0}$.

Let the symbols be interpreted as follows:

$$0^{\mathcal{A}} = 0$$
$$f^{\mathcal{A}}(x) = \begin{cases} 2x & \text{if } x > 0\\ x - 1 & \text{if } x \le 0 \end{cases}$$

- (a) $f^{\mathcal{A}}$ is defined as two disjoint domains that have disjoint ranges. Both domains are injective, hence the entire function is injective.
- (b) 0 is not in the range of $f^{\mathcal{A}}$: For x > 0, $f^{\mathcal{A}}(x) > 0$ and for $x \leq 0$, $f^{\mathcal{A}}(x) \leq -1$.
- (c) To show: $x \neq 0 \rightarrow \exists y (x = f(y))$. If x < 0, then $x \leq -1$, hence $x = f^{\mathcal{A}}(x+1)$. Otherwise, $x = f^{\mathcal{A}}\left(\frac{x}{2}\right)$.

Homework 7.1. [Invalid Herbrand Models] (8 points) Recall the fundamental theorem from the lecture: "Let F be a closed formula in Skolem form. Then F is satisfiable iff it has a Herbrand model".

Explain "what goes wrong" if the precondition is violated: when F is not closed or not in Skolem form. Describe both cases.

Homework 7.2. [Proof of the Fundamental Theorem] (6 points) Recall the fundamental theorem: Let F be a closed formula in Skolem form. Then F is satisfiable iff it has a Herbrand model. Give the omitted proof for the base case (slide 6, $\mathcal{A}(G) = \mathcal{T}(G)$).

Homework 7.3. [Herbrand Models] (6 points) Given the formula $F = \forall x (P(f(x)) \leftrightarrow \neg P(x))$

- 1. Specify a Herbrand model for F.
- 2. Specify a Herbrand structure suitable for F, which is not a model of F.