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Submission of homework: Before tutorial on 26.06.2018. Until further notice, home-
work has to be submitted in groups of two students.

Exercise 11.1. [Decidable Theories]
Let S be a set of sentences (i.e. closed formulas) such that S is closed under consequence: if
S |= F and F is closed, then F ∈ S. Additionally, assume that S is finitely axiomatizable
and complete, i.e. F ∈ S or ¬F ∈ S for any sentence F .

1. Give a procedure for deciding, given only the axiomatization of S, whether S |= F for
a sentence F .

2. Can you obtain a similar result when the assumption is that the axiom system is only
recursively enumerable?

Solution:

1. Let M be the set of axioms. Run resolution on M ∧ F and M ∧ ¬F in parallel. If
F 6∈ S, then M∧F ` � and the first resolution terminates. If F ∈ S, then M∧¬F ` �
and the second resolution terminates.

2. Yes, by compactness. Enumerate all finite subsets of the axiom set and run resolutions
in parallel.

Exercise 11.2. [Consequence]
Show that Cn is a closure operator, i.e. Cn fulfills the following properties:

• S ⊆ Cn(S)

• if S ⊆ S ′ then Cn(S) ⊆ Cn(S ′)

• Cn(Cn(S)) = Cn(S)

Solution:
In the following, suppose S, S ′ are sets of Σ-sentences and F is Σ-sentence.

F ∈ S =⇒ S |= F =⇒ Cn(S) |= F

F ∈ Cn(S) =⇒ S |= F =⇒ S ′ |= F =⇒ F ∈ Cn(S ′)

From the above two: Cn(S) ⊆ Cn(Cn(S))

F ∈ Cn(Cn(S)) =⇒ Cn(S) |= F =⇒(∗) S |= F =⇒ F ∈ Cn(S)

We have (*) because A |= Cn(S) iff A |= S by definition of Cn.
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Exercise 11.3. [Axiomatizations and Compactness]
Using compactness, show that if a theory is finitely axiomatizable, any countable axiomati-
zation of it has a finite subset that axiomatizes the same theory. In other words, if Cn(Γ) =
Cn(∆) with Γ countable and ∆ finite, then there is a finite Γ′ ⊆ Γ with Cn(Γ′) = Cn(Γ).

Solution:
Claim: We can construct a finite subset Γ′ ⊆ Γ that axiomatizes Cn(∆). In particular,
Γ′ ` ∆ must hold. This is equivalent to Γ′,¬∆ ` ⊥.

We also know that Γ,¬∆ ` ⊥, because Γ axiomatizes Cn(∆). Hence, the infinite set of
formulas Γ ∪ {¬∆} is unsatisfiable. By compactness, there must be a finite subset that is
unsatisfiable.

We can find this subset by enumerating all finite subsets Γ′ ⊆ Γ and running resolution on
Γ′,¬∆.

Exercise 11.4. [Natural Deduction]
Prove the following formula using natural deduction.

¬(∀x(∃y(¬P (x) ∧ P (y))))

Solution:

∀E [∀x∃y(¬P (x) ∧ P (y))]

∃y(¬P (x1) ∧ P (y))

[¬P (x1) ∧ P (y1)]

P (y1)
∧E2

∀E [∀x∃y(¬P (x) ∧ P (y))]

∃y(¬P (y1) ∧ P (y))

[¬P (y1) ∧ P (y2)]

¬P (y1)
∧E1

¬P (y1)
∃E

⊥
¬E

⊥
∃E

¬(∀x(∃y(¬P (x) ∧ P (y))))
¬I
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Homework 11.1. [Counterexamples from Sequent Calculus] (4 points)
Consider the statement ∀xP (x)→ ¬P (f(x)).

1. What happens when trying to prove the validity of this formula in sequent calculus?

2. How can we derive a countermodel from the proof tree?

3. Is there a smaller countermodel?

Homework 11.2. [Proofs] (8 points)
Prove the following statements using natural deduction.

1. ¬∀x∃y∀z(¬P (x, z) ∧ P (z, y))

2. ∃x(P (x)→ ∀xP (x))

Homework 11.3. [Elementary Classes] (8 points)
In this exercise, we assume that all structures and formulas share the same signature Σ.

We define the operator Mod(S) that returns the class of all structures that model a set of
formulas S. In other words, Mod(S) contains all A such that A |= S.

A class of models M is said to be ∆-elementary if there is a set of formulas S such that
M = Mod(S). If S is just a singleton set, i.e. there is a formula F such that S = {F}, then
M is elementary.

Prove:

1. A class of models M is elementary if and only if there is a finite set of formulas S such
that M = Mod(S).

2. If M is elementary and M = Mod(S), there is a finite subset S ′ ⊆ S such that
M = Mod(S ′).


