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work has to be submitted in groups of two students.

Submission of homework: Before tutorial on 26.06.2018. Until further notice, home-

Exercise 11.1.  [Decidable Theories|

Let S be a set of sentences (i.e. closed formulas) such that S is closed under consequence: if
S | F and F is closed, then F' € S. Additionally, assume that S is finitely axiomatizable

and complete, i.e. F' € S or =F € S for any sentence F'.

1. Give a procedure for deciding, given only the axiomatization of S, whether S |= F for

a sentence F'.

2. Can you obtain a similar result when the assumption is that the axiom system is only

recursiely enumerable?

Solution:

1. Let M be the set of axioms. Run resolution on M A F' and M A —=F in parallel. If
F ¢ S, then MAF F [0 and the first resolution terminates. If ' € S, then M A—F + [

and the second resolution terminates.

2. Yes, by compactness. Enumerate all finite subsets of the axiom set and run resolutions

in parallel.

Exercise 11.2.  [Consequence]

Show that Cn is a closure operator, i.e. Cn fulfills the following properties:

e S C (Cn(S)
e if S C S’ then Cn(S) C Cn(S")
e Cn(Cn(S)) = Cn(S)

Solution:

In the following, suppose S, S’ are sets of Y-sentences and F' is Y-sentence.

FeS=—SEF=Cn(S)EF

FelCn(S)=SEF=SEF= FecCn(Y)

From the above two: Cn(S) C Cn(Cn(S))

FeCn(Cn(S) = Cn(S)EF =" SEF—=— FecCn(S)

We have (*) because A = Cn(S) iff A = S by definition of Cn.
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Exercise 11.3.  [Axiomatizations and Compactness]
Using compactness, show that if a theory is finitely axiomatizable, any countable axiomati-

zation of it has a finite subset that axiomatizes the same theory. In other words, if Cn(I") =
Cn(A) with I' countable and A finite, then there is a finite IV C I" with Cn(I'") = Cn(T).

Solution:
Claim: We can construct a finite subset IV C I' that axiomatizes Cn(A). In particular,
I+ A must hold. This is equivalent to IV, -A F L.

We also know that I', A F L, because I' axiomatizes Cn(A). Hence, the infinite set of
formulas I U {—=A} is unsatisfiable. By compactness, there must be a finite subset that is
unsatisfiable.

We can find this subset by enumerating all finite subsets IV C I' and running resolution on
IV, -A.

Exercise 11.4.  [Natural Deduction]
Prove the following formula using natural deduction.

~(Vz(3y(=P(z) A P(y))))

Solution:
[Va3y(=P(x) A P(y))] [-P(y1) A P(y2)] N
[ﬁp(ml) A P(yl)] /\E2 3?J(_‘P(yl) A P(y)) _‘P(yl) JE
[Vz3y(—~P(z) A P(y))] P(y1) —P(y1) -E
Jy(=P(z1) A P(y)) L IE
1 7

~(Vz(3y(—~P(z) A P(y))))
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Homework 11.1.  [Counterexamples from Sequent Calculus] (4 points)
Consider the statement VzP(z) — =P (f(x)).

1. What happens when trying to prove the validity of this formula in sequent calculus?
2. How can we derive a countermodel from the proof tree?

3. Is there a smaller countermodel?

Homework 11.2.  [Proofs] (8 points)
Prove the following statements using natural deduction.

1. =VaIyVz(=P(z,z) A P(z,y))
2. Jx(P(z) — Vo P(z))

Homework 11.3.  [Elementary Classes] (8 points)
In this exercise, we assume that all structures and formulas share the same signature 3.

We define the operator Mod(S) that returns the class of all structures that model a set of
formulas S. In other words, Mod(S) contains all A such that A = S.

A class of models M is said to be A-elementary if there is a set of formulas S such that
M = Mod(S). If S is just a singleton set, i.e. there is a formula F' such that S = {F'}, then
M is elementary.

Prove:

1. A class of models M is elementary if and only if there is a finite set of formulas S such
that M = Mod(S).

2. If M is elementary and M = Mod(S), there is a finite subset S’ C S such that
M = Mod(5").



